Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces

Yukai Sun, X. Dai
{"title":"Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces","authors":"Yukai Sun, X. Dai","doi":"10.3842/sigma.2020.068","DOIUrl":null,"url":null,"abstract":"Gromov asked if the bi-invariant metric on an $n$ dimensional compact Lie group is extremal compared to any other metrics. \nIn this note, we prove that the bi-invariant metric on an $n$ dimensional compact connected semi-simple Lie group $G$ is extremal in the sense of Gromov when compared to the left invariant metrics. In fact the same result holds for a compact connected homogeneous Riemannian manifold $G/H$ with the Lie algebra of $G$ having trivial center.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2020.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gromov asked if the bi-invariant metric on an $n$ dimensional compact Lie group is extremal compared to any other metrics. In this note, we prove that the bi-invariant metric on an $n$ dimensional compact connected semi-simple Lie group $G$ is extremal in the sense of Gromov when compared to the left invariant metrics. In fact the same result holds for a compact connected homogeneous Riemannian manifold $G/H$ with the Lie algebra of $G$ having trivial center.
李群和齐次空间上双不变度量的Gromov刚性
Gromov问$n$维紧李群上的双不变度规与其他任何度规相比是否极值。本文证明了$n$维紧连通半简单李群$G$上的双不变度量相对于左不变度量在Gromov意义上是极值的。事实上,对于具有平凡中心的李代数的紧连通齐次黎曼流形G/H也有同样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信