Random worlds and maximum entropy

Adam J. Grove, Joseph Y. Halpern, D. Koller
{"title":"Random worlds and maximum entropy","authors":"Adam J. Grove, Joseph Y. Halpern, D. Koller","doi":"10.1109/LICS.1992.185516","DOIUrl":null,"url":null,"abstract":"Given a knowledge base theta containing first-order and statistical facts, a principled method, called the random-worlds method, for computing a degree of belief that some phi holds given theta is considered. If the domain has size N, then one can consider all possible worlds with domain (1, . . ., N) that satisfy theta and compute the fraction of them in which phi is true. The degree of belief is defined as the asymptotic value of this fraction as N grows large. It is shown that when the vocabulary underlying phi and theta uses constants and unary predicates only, one can in many cases use a maximum entropy computation to compute the degree of belief. Making precise exactly when a maximum entropy calculation can be used turns out to be subtle. The subtleties are explored, and sufficient conditions that cover many of the cases that occur in practice are provided.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"48 1","pages":"22-33"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

Abstract

Given a knowledge base theta containing first-order and statistical facts, a principled method, called the random-worlds method, for computing a degree of belief that some phi holds given theta is considered. If the domain has size N, then one can consider all possible worlds with domain (1, . . ., N) that satisfy theta and compute the fraction of them in which phi is true. The degree of belief is defined as the asymptotic value of this fraction as N grows large. It is shown that when the vocabulary underlying phi and theta uses constants and unary predicates only, one can in many cases use a maximum entropy computation to compute the degree of belief. Making precise exactly when a maximum entropy calculation can be used turns out to be subtle. The subtleties are explored, and sufficient conditions that cover many of the cases that occur in practice are provided.<>
随机世界和最大熵
给定一个包含一阶和统计事实的知识库,考虑一种原则性的方法,称为随机世界方法,用于计算某些phi在给定的情况下持有的相信程度。如果定义域的大小是N,那么我们就可以考虑所有可能的域(1,…,N)满足,并计算其中的分数。置信度定义为N增大时该分数的渐近值。结果表明,当phi和theta的基础词汇表仅使用常量和一元谓词时,在许多情况下可以使用最大熵计算来计算相信程度。准确地确定何时可以使用最大熵计算是很微妙的。探讨了其中的微妙之处,并提供了涵盖实践中发生的许多情况的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信