{"title":"Anti-Inflammatory and Apoptotic Signaling Effect of Fucoxanthin on Benzo(A)Pyrene-Induced Lung Cancer in Mice.","authors":"Weiwei Chen, Hongjing Zhang, Yue Liu","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2019030301","DOIUrl":null,"url":null,"abstract":"Fucoxanthin, a potent carotenoid present in various natural sources especially from seaweeds; it exhibits several biological effects like anti-neoplastic, anti-mutagenic, anti-diabetic, anti-obesity and anti-inflammatory actions. Fucoxanthin role in chemoprevention of lung cancer in mouse model induced using benzo(a)pyrene [B(a)P] has been presented here. Oral administration of fucoxanthin with and without B(a)P were studied, the results from our study shows that fucoxanthin significantly decreased tumor progression in mice exposed to B(a)P, the obtained data were correlated with increased antioxidant, apoptosis and decreased tumour marker and anti-apoptotic molecules. With respect to apoptosis, fucoxanthin treated animals shows increased apoptosis compared to tumor induced mice by increased expression of caspase 9 and 3 and decreased expression of anti-apoptotic Bcl2 protein. Finally, histopathological and immuno histochemical analysis also revealed that fucoxanthin shows potent anticancer agent by bringing back the damaged tissue treated with B(a)P and also decreases the expression of PCNA in cancer induced mice. The anticancer effect of fucoxanthin may be attributed by several independent mechanisms which play a important roles in the prevention of cancer development, there is also substantial evidences to show that fucoxanthin acts indirectly by increasing the antioxidant capacity of affected tissue and prepared to cope up with oxidative stress which is proved in our study. Thus from our study it is clearly established that fucoxanthin act as a persuasive anticancer drug against lung cancer.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"4 1","pages":"239-251"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2019030301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Fucoxanthin, a potent carotenoid present in various natural sources especially from seaweeds; it exhibits several biological effects like anti-neoplastic, anti-mutagenic, anti-diabetic, anti-obesity and anti-inflammatory actions. Fucoxanthin role in chemoprevention of lung cancer in mouse model induced using benzo(a)pyrene [B(a)P] has been presented here. Oral administration of fucoxanthin with and without B(a)P were studied, the results from our study shows that fucoxanthin significantly decreased tumor progression in mice exposed to B(a)P, the obtained data were correlated with increased antioxidant, apoptosis and decreased tumour marker and anti-apoptotic molecules. With respect to apoptosis, fucoxanthin treated animals shows increased apoptosis compared to tumor induced mice by increased expression of caspase 9 and 3 and decreased expression of anti-apoptotic Bcl2 protein. Finally, histopathological and immuno histochemical analysis also revealed that fucoxanthin shows potent anticancer agent by bringing back the damaged tissue treated with B(a)P and also decreases the expression of PCNA in cancer induced mice. The anticancer effect of fucoxanthin may be attributed by several independent mechanisms which play a important roles in the prevention of cancer development, there is also substantial evidences to show that fucoxanthin acts indirectly by increasing the antioxidant capacity of affected tissue and prepared to cope up with oxidative stress which is proved in our study. Thus from our study it is clearly established that fucoxanthin act as a persuasive anticancer drug against lung cancer.