From image deblurring to optimal investments : maximum likelihood solutions for positive linear inverse problems

Y. Vardi, D. Lee
{"title":"From image deblurring to optimal investments : maximum likelihood solutions for positive linear inverse problems","authors":"Y. Vardi, D. Lee","doi":"10.1111/J.2517-6161.1993.TB01925.X","DOIUrl":null,"url":null,"abstract":"The problem of recovering an input signal from a blurred output, in an input-output system with linear distortion, is ubiquitous in science and technology. When the blurred output is not degraded by statistical noise the problem is entirely deterministic and amounts to a mathematical inversion of a linear system with positive parameters, subject to positivity constraints on the solution. We show that all such linear inverse problems with positivity restrictions (LININPOS problems for short) can be interpreted as statistical estimation problems from incomplete data based on infinitely large'samples', and that maximum likelihood (ML) estimation and the EM algorithm provide a straightforward method of solution for such problems","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"12 1","pages":"569-598"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"232","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1993.TB01925.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 232

Abstract

The problem of recovering an input signal from a blurred output, in an input-output system with linear distortion, is ubiquitous in science and technology. When the blurred output is not degraded by statistical noise the problem is entirely deterministic and amounts to a mathematical inversion of a linear system with positive parameters, subject to positivity constraints on the solution. We show that all such linear inverse problems with positivity restrictions (LININPOS problems for short) can be interpreted as statistical estimation problems from incomplete data based on infinitely large'samples', and that maximum likelihood (ML) estimation and the EM algorithm provide a straightforward method of solution for such problems
从图像去模糊到最优投资:正线性逆问题的最大似然解
在具有线性失真的输入输出系统中,从模糊的输出中恢复输入信号的问题在科学技术中是普遍存在的。当模糊的输出没有被统计噪声退化时,问题是完全确定的,相当于一个具有正参数的线性系统的数学反演,受制于解的正约束。我们表明,所有这些具有正性限制的线性逆问题(简称LININPOS问题)都可以解释为基于无限大“样本”的不完整数据的统计估计问题,并且最大似然(ML)估计和EM算法提供了解决此类问题的直接方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信