Lower semicontinuity in $GSBD$ for nonautonomous surface integrals

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
V. Cicco, G. Scilla
{"title":"Lower semicontinuity in $GSBD$ for nonautonomous surface integrals","authors":"V. Cicco, G. Scilla","doi":"10.1051/cocv/2023001","DOIUrl":null,"url":null,"abstract":"We provide a sufficient condition for lower semicontinuity of nonautonomous noncoercive surface energies defined on the space of $GSBD^p$ functions, whose dependence on the $x$-variable is $W^{1,1}$ or even $BV$: the notion of \\emph{nonautonomous symmetric joint convexity}, which extends the analogous definition devised for autonomous integrands in \\cite{FPS} where the conservativeness of the approximating vector fields is assumed. This condition allows to extend to our setting a nonautonomous chain formula in $SBV$ obtained in \\cite{ACDD}, and this is a key tool in the proof of the lower semicontinuity result. This new joint convexity can be checked explicitly for some classes of surface energies arising from variational models of fractures in inhomogeneous materials.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2023001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a sufficient condition for lower semicontinuity of nonautonomous noncoercive surface energies defined on the space of $GSBD^p$ functions, whose dependence on the $x$-variable is $W^{1,1}$ or even $BV$: the notion of \emph{nonautonomous symmetric joint convexity}, which extends the analogous definition devised for autonomous integrands in \cite{FPS} where the conservativeness of the approximating vector fields is assumed. This condition allows to extend to our setting a nonautonomous chain formula in $SBV$ obtained in \cite{ACDD}, and this is a key tool in the proof of the lower semicontinuity result. This new joint convexity can be checked explicitly for some classes of surface energies arising from variational models of fractures in inhomogeneous materials.
非自治曲面积分$GSBD$的下半连续性
我们提供了定义在$GSBD^p$函数空间上的非自治非强制表面能的下半连续性的一个充分条件,其对$x$变量的依赖为$W^{1,1}$甚至$BV$:\emph{非自治对称联合凸性}的概念,它扩展了在\cite{FPS}中假设近似向量场的保守性的自治积分的类似定义。这个条件可以推广到\cite{ACDD}中得到的一个在$SBV$中的非自治链式,这是证明下半连续性结果的一个关键工具。对于非均匀材料中断裂变分模型所产生的某些类型的表面能,这种新的节理凸性可以得到明确的检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信