Coupled Spin-Orbit Interactions in Flying Qubit Architectures

Gaurab Panda, Ryan S. Aridi, Haozhi Dong, V. Ayres, H. Shaw
{"title":"Coupled Spin-Orbit Interactions in Flying Qubit Architectures","authors":"Gaurab Panda, Ryan S. Aridi, Haozhi Dong, V. Ayres, H. Shaw","doi":"10.1109/NANO51122.2021.9514285","DOIUrl":null,"url":null,"abstract":"Vertical spin-orbit coupling to produce quantum entanglement between electrons confined in quantum dots is investigated for a split-gate double layer heterostructure design. The quantum dots in each active layer may result from quantum point contact fabrication or be generated dynamically using a surface acoustic wave flying qubit approach. Optimization of spin-spin coupling versus all other couplings can set up competing requirements for heterostructure and device fabrication choices. In the present work, a series of active layers: indium antimonide, indium arsenide, indium gallium arsenide, and gallium arsenide, and device architectures is investigated. We find that device architectures that support spin entanglement are within achievable fabrication ranges for the active layer materials investigated.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"28 1","pages":"409-412"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical spin-orbit coupling to produce quantum entanglement between electrons confined in quantum dots is investigated for a split-gate double layer heterostructure design. The quantum dots in each active layer may result from quantum point contact fabrication or be generated dynamically using a surface acoustic wave flying qubit approach. Optimization of spin-spin coupling versus all other couplings can set up competing requirements for heterostructure and device fabrication choices. In the present work, a series of active layers: indium antimonide, indium arsenide, indium gallium arsenide, and gallium arsenide, and device architectures is investigated. We find that device architectures that support spin entanglement are within achievable fabrication ranges for the active layer materials investigated.
飞行量子比特体系结构中的耦合自旋轨道相互作用
研究了在分栅双层异质结构设计中,受量子点约束的电子之间产生量子纠缠的垂直自旋-轨道耦合。每个有源层中的量子点可以通过量子点接触制造或使用表面声波飞行量子比特方法动态生成。自旋-自旋耦合相对于所有其他耦合的优化可以对异质结构和器件制造选择提出竞争要求。在本工作中,研究了一系列的活性层:锑化铟、砷化铟、砷化铟镓和砷化镓,以及器件结构。我们发现支持自旋纠缠的器件架构在所研究的活性层材料的可实现制造范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信