Symmetric states and dynamics of three quantum bits

F. Albertini, D. D’Alessandro
{"title":"Symmetric states and dynamics of three quantum bits","authors":"F. Albertini, D. D’Alessandro","doi":"10.26421/QIC22.7-8-1","DOIUrl":null,"url":null,"abstract":"The unitary group acting on the Hilbert space ${\\cal H}:=(C^2)^{\\otimes 3}$ of three quantum bits admits a Lie subgroup, $U^{S_3}(8)$, of elements which permute with the symmetric group of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert space ${\\cal H}$ splits into three invariant subspaces of dimensions $4$, $2$ and $2$ respectively, each corresponding to an irreducible representation of $su(2)$. The subspace of dimension $4$ is uniquely determined and corresponds to states that are themselves invariant under the action of the symmetric group. This is the so called {\\it symmetric sector.} The subspaces of dimension two are not uniquely determined and we parametrize them all. We provide an analysis of pure states that are in the subspaces invariant under $U^{S_3}(8)$. This concerns their entanglement properties, separability criteria and dynamics under the Lie subgroup $U^{S_3}(8)$. As a physical motivation for the states and dynamics we study, we propose a physical set-up which consists of a symmetric network of three spin $\\frac{1}{2}$ particles under a common driving electro-magnetic field. {For such system, we solve the control theoretic problem of driving a separable state to a state with maximal distributed entanglement.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"33 1","pages":"541-568"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC22.7-8-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The unitary group acting on the Hilbert space ${\cal H}:=(C^2)^{\otimes 3}$ of three quantum bits admits a Lie subgroup, $U^{S_3}(8)$, of elements which permute with the symmetric group of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert space ${\cal H}$ splits into three invariant subspaces of dimensions $4$, $2$ and $2$ respectively, each corresponding to an irreducible representation of $su(2)$. The subspace of dimension $4$ is uniquely determined and corresponds to states that are themselves invariant under the action of the symmetric group. This is the so called {\it symmetric sector.} The subspaces of dimension two are not uniquely determined and we parametrize them all. We provide an analysis of pure states that are in the subspaces invariant under $U^{S_3}(8)$. This concerns their entanglement properties, separability criteria and dynamics under the Lie subgroup $U^{S_3}(8)$. As a physical motivation for the states and dynamics we study, we propose a physical set-up which consists of a symmetric network of three spin $\frac{1}{2}$ particles under a common driving electro-magnetic field. {For such system, we solve the control theoretic problem of driving a separable state to a state with maximal distributed entanglement.
三个量子比特的对称态和动力学
作用于三个量子比特的希尔伯特空间${\cal H}:=(C^2)^{\otimes 3}$上的酉群允许有一个李子群$U^{S_3}(8)$,它是由与三个对象的对称排列群置换的元素组成的。在这样的Lie子群作用下,Hilbert空间${\cal H}$分裂为三个维度分别为$4$、$2$和$2$的不变子空间,每个子空间对应$su(2)$的一个不可约表示。维度$4$的子空间是唯一确定的,并且对应于在对称群作用下自身不变的状态。这就是所谓的{\it对称扇区。第2维的子空间不是唯一确定的,我们将它们全部参数化。给出了在$U^{S_3}(8)$下子空间不变的纯态的分析。讨论了它们在Lie子群$U^{S_3}(8)$下的纠缠性质、可分性准则和动力学。作为我们研究的状态和动力学的物理动机,我们提出了一个由三个自旋$\frac{1}{2}$粒子组成的对称网络在共同驱动电磁场下的物理设置。对于这类系统,我们解决了将可分离状态驱动到具有最大分布纠缠状态的控制理论问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信