{"title":"Symmetric states and dynamics of three quantum bits","authors":"F. Albertini, D. D’Alessandro","doi":"10.26421/QIC22.7-8-1","DOIUrl":null,"url":null,"abstract":"The unitary group acting on the Hilbert space ${\\cal H}:=(C^2)^{\\otimes 3}$ of three quantum bits admits a Lie subgroup, $U^{S_3}(8)$, of elements which permute with the symmetric group of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert space ${\\cal H}$ splits into three invariant subspaces of dimensions $4$, $2$ and $2$ respectively, each corresponding to an irreducible representation of $su(2)$. The subspace of dimension $4$ is uniquely determined and corresponds to states that are themselves invariant under the action of the symmetric group. This is the so called {\\it symmetric sector.} The subspaces of dimension two are not uniquely determined and we parametrize them all. We provide an analysis of pure states that are in the subspaces invariant under $U^{S_3}(8)$. This concerns their entanglement properties, separability criteria and dynamics under the Lie subgroup $U^{S_3}(8)$. As a physical motivation for the states and dynamics we study, we propose a physical set-up which consists of a symmetric network of three spin $\\frac{1}{2}$ particles under a common driving electro-magnetic field. {For such system, we solve the control theoretic problem of driving a separable state to a state with maximal distributed entanglement.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"33 1","pages":"541-568"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC22.7-8-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The unitary group acting on the Hilbert space ${\cal H}:=(C^2)^{\otimes 3}$ of three quantum bits admits a Lie subgroup, $U^{S_3}(8)$, of elements which permute with the symmetric group of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert space ${\cal H}$ splits into three invariant subspaces of dimensions $4$, $2$ and $2$ respectively, each corresponding to an irreducible representation of $su(2)$. The subspace of dimension $4$ is uniquely determined and corresponds to states that are themselves invariant under the action of the symmetric group. This is the so called {\it symmetric sector.} The subspaces of dimension two are not uniquely determined and we parametrize them all. We provide an analysis of pure states that are in the subspaces invariant under $U^{S_3}(8)$. This concerns their entanglement properties, separability criteria and dynamics under the Lie subgroup $U^{S_3}(8)$. As a physical motivation for the states and dynamics we study, we propose a physical set-up which consists of a symmetric network of three spin $\frac{1}{2}$ particles under a common driving electro-magnetic field. {For such system, we solve the control theoretic problem of driving a separable state to a state with maximal distributed entanglement.