{"title":"Self-Extinguishing and Non-Drip Flame Retardant Polyamide 6 Nanocomposite: Mechanical, Thermal, and Combustion Behavior","authors":"Hao Wu, R. Ortiz, R. A. Correa, M. Krifa, J. Koo","doi":"10.1515/flret-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract Incorporation of flame-retardant (FR) additives and nanoclay fillers into thermoplastic polymers effectively suppresses materials flammability and melt dripping behavior. However, it largely affects other properties, such as toughness and ductility. In order to recover the lost toughness and ductility of flame retardant polyamide 6, various loadings of maleic anhydride modified SEBS elastomer were added and processed by twin screw extrusion. TEM images showed exfoliated nanoclay platelets and reveals that the clay platelets well dispersed in the polymer matrix. By balancing the ratio of flame retardants, nanoclay and elastomers, formulation with elongation at break as high as 76% was achieved. Combining conventional intumescent FR and nanoclay, UL-94 V-0 rating and the LOI value as high as 32.2 were achieved. In conclusion, effective self-extinguishing and non-drip polyamide 6 nanocomposite formulations with significant improvement in toughness and ductility were achieved.","PeriodicalId":12171,"journal":{"name":"Flame Retardancy and Thermal Stability of Materials","volume":"1 1","pages":"1 - 13"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flame Retardancy and Thermal Stability of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/flret-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Abstract Incorporation of flame-retardant (FR) additives and nanoclay fillers into thermoplastic polymers effectively suppresses materials flammability and melt dripping behavior. However, it largely affects other properties, such as toughness and ductility. In order to recover the lost toughness and ductility of flame retardant polyamide 6, various loadings of maleic anhydride modified SEBS elastomer were added and processed by twin screw extrusion. TEM images showed exfoliated nanoclay platelets and reveals that the clay platelets well dispersed in the polymer matrix. By balancing the ratio of flame retardants, nanoclay and elastomers, formulation with elongation at break as high as 76% was achieved. Combining conventional intumescent FR and nanoclay, UL-94 V-0 rating and the LOI value as high as 32.2 were achieved. In conclusion, effective self-extinguishing and non-drip polyamide 6 nanocomposite formulations with significant improvement in toughness and ductility were achieved.