{"title":"Géométrie de l'intermittence en turbulence développée","authors":"Diogo Queiros-Condé","doi":"10.1016/S1287-4620(00)87509-2","DOIUrl":null,"url":null,"abstract":"<div><p>A geometrical interpretation of intermittency in fully developed turbulence is realized through an hierarchy of fractal structures Ω<sub>p</sub> of dimensions <em>Δ</em><sub>p</sub> linked each other by the relations Ω<sub>p + <em>1</em></sub> − Ω<sub>p</sub> (i.e. <em>Δ</em><sub>p + <em>1</em></sub> < <em>Δ</em><sub>p</sub>) and γ = (<em>Δ</em><sub>p + 1</sub> − <em>Δ<sub>∞</sub></em>)/(<em>Δ</em><sub>p</sub> − <em>Δ<sub>∞</sub></em>) with γ = <em>((1 + 3/√8)<sup>1/3</sup> + (1 − 3/√8)<sup>1/3</sup>)<sup>3</sup></em> and <em>Δ<sub>∞</sub> = 1</em> and <em>Δ<sub>∞</sub> = 1</em>. This is obtained by the introduction of an entropy jump, defined at the scale r, <em>Δ</em>S<sub>p</sub>(r) = (<em>Δ</em><sub>p + <em>1</em></sub> − <em>Δ</em><sub>p</sub>) <em>ln</em> (r/r<sub><em>0</em></sub>) characterizing the order level of each sub-structure Ω<sub>p</sub> and verifying a linear relation <em>Δ</em>S<sub>p</sub>(r) = γ <em>Δ</em>S<sub>p − <em>1</em></sub>(r).</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 14","pages":"Pages 1385-1390"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)87509-2","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000875092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A geometrical interpretation of intermittency in fully developed turbulence is realized through an hierarchy of fractal structures Ωp of dimensions Δp linked each other by the relations Ωp + 1 − Ωp (i.e. Δp + 1 < Δp) and γ = (Δp + 1 − Δ∞)/(Δp − Δ∞) with γ = ((1 + 3/√8)1/3 + (1 − 3/√8)1/3)3 and Δ∞ = 1 and Δ∞ = 1. This is obtained by the introduction of an entropy jump, defined at the scale r, ΔSp(r) = (Δp + 1 − Δp) ln (r/r0) characterizing the order level of each sub-structure Ωp and verifying a linear relation ΔSp(r) = γ ΔSp − 1(r).