Neural Networks Applied to Chain-Ladder Reserving

Mario V. Wuthrich
{"title":"Neural Networks Applied to Chain-Ladder Reserving","authors":"Mario V. Wuthrich","doi":"10.2139/ssrn.2966126","DOIUrl":null,"url":null,"abstract":"Classical claims reserving methods act on so-called claims reserving triangles which are aggregated insurance portfolios. A crucial assumption in classical claims reserving is that these aggregated portfolios are sufficiently homogeneous so that a coarse reserving algorithm can be applied. We start from such a coarse reserving method, which in our case is Mack's chain-ladder method, and show how this approach can be refined for heterogeneity and individual claims feature information using neural networks.","PeriodicalId":82443,"journal":{"name":"Real property, probate, and trust journal","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real property, probate, and trust journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2966126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Classical claims reserving methods act on so-called claims reserving triangles which are aggregated insurance portfolios. A crucial assumption in classical claims reserving is that these aggregated portfolios are sufficiently homogeneous so that a coarse reserving algorithm can be applied. We start from such a coarse reserving method, which in our case is Mack's chain-ladder method, and show how this approach can be refined for heterogeneity and individual claims feature information using neural networks.
神经网络在链梯预约中的应用
经典的索赔保留方法作用于所谓的索赔保留三角形,它是汇总的保险组合。经典索赔保留的一个关键假设是,这些聚合的投资组合足够均匀,因此可以应用粗保留算法。我们从这种粗糙的保留方法(在我们的例子中是Mack的链梯方法)开始,并展示了如何使用神经网络对这种方法进行改进,以获取异质性和个人索赔特征信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信