V. M. Baeza, Flor G. Ortiz-Gomez, E. Lagunas, T. S. Abdu, S. Chatzinotas
{"title":"Multi-Criteria Ground Segment Dimensioning for Non-Geostationary Satellite Constellations","authors":"V. M. Baeza, Flor G. Ortiz-Gomez, E. Lagunas, T. S. Abdu, S. Chatzinotas","doi":"10.1109/EuCNC/6GSummit58263.2023.10188237","DOIUrl":null,"url":null,"abstract":"Non-Geostationary Orbit (NGSO) satellite constellations are becoming increasingly popular as an alternative to terrestrial networks to deliver ubiquitous broadband services. With satellites travelling at high speeds in low altitudes, a more complex ground segment composed of multiple ground stations is required. Determining the appropriate number and geographical location of such ground stations is a challenging problem. In this paper, we propose a ground segment dimensioning technique that takes into account multiple factors such as rain attenuation, elevation angle, visibility, and geographical constraints as well as user traffic demands. In particular, we propose a methodology to merge all constraints into a single map-grid, which is later used to determine both the number and the location of the ground stations. We present a detailed analysis for a particular constellation combining multiple criteria whose results can serve as benchmarks for future optimization algorithms.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"8 1","pages":"252-257"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Non-Geostationary Orbit (NGSO) satellite constellations are becoming increasingly popular as an alternative to terrestrial networks to deliver ubiquitous broadband services. With satellites travelling at high speeds in low altitudes, a more complex ground segment composed of multiple ground stations is required. Determining the appropriate number and geographical location of such ground stations is a challenging problem. In this paper, we propose a ground segment dimensioning technique that takes into account multiple factors such as rain attenuation, elevation angle, visibility, and geographical constraints as well as user traffic demands. In particular, we propose a methodology to merge all constraints into a single map-grid, which is later used to determine both the number and the location of the ground stations. We present a detailed analysis for a particular constellation combining multiple criteria whose results can serve as benchmarks for future optimization algorithms.