Weak optimality, and the meaning of sharing

Thibaut Balabonski
{"title":"Weak optimality, and the meaning of sharing","authors":"Thibaut Balabonski","doi":"10.1145/2500365.2500606","DOIUrl":null,"url":null,"abstract":"In this paper we investigate laziness and optimal evaluation strategies for functional programming languages. We consider the weak lambda-calculus as a basis of functional programming languages, and we adapt to this setting the concepts of optimal reductions that were defined for the full lambda-calculus. We prove that the usual implementation of call-by-need using sharing is optimal, that is, normalizing any lambda-term with call-by-need requires exactly the same number of reduction steps as the shortest reduction sequence in the weak lambda-calculus without sharing. Furthermore, we prove that optimal reduction sequences without sharing are not computable. Hence sharing is the only computable means to reach weak optimality.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we investigate laziness and optimal evaluation strategies for functional programming languages. We consider the weak lambda-calculus as a basis of functional programming languages, and we adapt to this setting the concepts of optimal reductions that were defined for the full lambda-calculus. We prove that the usual implementation of call-by-need using sharing is optimal, that is, normalizing any lambda-term with call-by-need requires exactly the same number of reduction steps as the shortest reduction sequence in the weak lambda-calculus without sharing. Furthermore, we prove that optimal reduction sequences without sharing are not computable. Hence sharing is the only computable means to reach weak optimality.
弱最优性,和共享的意义
本文研究了函数式编程语言的惰性和最优求值策略。我们认为弱λ演算是函数式编程语言的基础,并且我们适应了为完整λ演算定义的最优约简的概念。我们证明了使用共享的按需调用的通常实现是最优的,即使用按需调用规范化任何lambda项所需的约简步数与不共享的弱lambda演算中的最短约简序列完全相同。进一步证明了没有共享的最优约简序列是不可计算的。因此,共享是达到弱最优性的唯一可计算手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信