Asymptotic normality for eigenvalue statistics of a general sample covariance matrix when p/n→∞ and applications

Jiaxin Qiu, Zeng Li, Jianfeng Yao
{"title":"Asymptotic normality for eigenvalue statistics of a general sample covariance matrix when p/n→∞ and applications","authors":"Jiaxin Qiu, Zeng Li, Jianfeng Yao","doi":"10.1214/23-aos2300","DOIUrl":null,"url":null,"abstract":"The asymptotic normality for a large family of eigenvalue statistics of a general sample covariance matrix is derived under the ultra-high dimensional setting, that is, when the dimension to sample size ratio $p/n \\to \\infty$. Based on this CLT result, we first adapt the covariance matrix test problem to the new ultra-high dimensional context. Then as a second application, we develop a new test for the separable covariance structure of a matrix-valued white noise. Simulation experiments are conducted for the investigation of finite-sample properties of the general asymptotic normality of eigenvalue statistics, as well as the second test for separable covariance structure of matrix-valued white noise.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The asymptotic normality for a large family of eigenvalue statistics of a general sample covariance matrix is derived under the ultra-high dimensional setting, that is, when the dimension to sample size ratio $p/n \to \infty$. Based on this CLT result, we first adapt the covariance matrix test problem to the new ultra-high dimensional context. Then as a second application, we develop a new test for the separable covariance structure of a matrix-valued white noise. Simulation experiments are conducted for the investigation of finite-sample properties of the general asymptotic normality of eigenvalue statistics, as well as the second test for separable covariance structure of matrix-valued white noise.
p/n→∞时一般样本协方差矩阵特征值统计量的渐近正态性及其应用
在超高维设置下,即当维数与样本量之比$p/n \to \infty$时,导出了一般样本协方差矩阵的一大组特征值统计量的渐近正态性。在此CLT结果的基础上,我们首先将协方差矩阵检验问题应用于新的超高维环境。然后作为第二个应用,我们提出了一个新的检验矩阵值白噪声的可分离协方差结构的方法。对特征值统计量一般渐近正态性的有限样本性质进行了仿真实验研究,并对矩阵值白噪声的可分协方差结构进行了二次检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信