{"title":"Asymptotic normality for eigenvalue statistics of a general sample covariance matrix when p/n→∞ and applications","authors":"Jiaxin Qiu, Zeng Li, Jianfeng Yao","doi":"10.1214/23-aos2300","DOIUrl":null,"url":null,"abstract":"The asymptotic normality for a large family of eigenvalue statistics of a general sample covariance matrix is derived under the ultra-high dimensional setting, that is, when the dimension to sample size ratio $p/n \\to \\infty$. Based on this CLT result, we first adapt the covariance matrix test problem to the new ultra-high dimensional context. Then as a second application, we develop a new test for the separable covariance structure of a matrix-valued white noise. Simulation experiments are conducted for the investigation of finite-sample properties of the general asymptotic normality of eigenvalue statistics, as well as the second test for separable covariance structure of matrix-valued white noise.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The asymptotic normality for a large family of eigenvalue statistics of a general sample covariance matrix is derived under the ultra-high dimensional setting, that is, when the dimension to sample size ratio $p/n \to \infty$. Based on this CLT result, we first adapt the covariance matrix test problem to the new ultra-high dimensional context. Then as a second application, we develop a new test for the separable covariance structure of a matrix-valued white noise. Simulation experiments are conducted for the investigation of finite-sample properties of the general asymptotic normality of eigenvalue statistics, as well as the second test for separable covariance structure of matrix-valued white noise.