Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior

Ningning Zhao, A. Basarab, D. Kouamé, J. Tourneret
{"title":"Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior","authors":"Ningning Zhao, A. Basarab, D. Kouamé, J. Tourneret","doi":"10.1109/ICIP.2014.7025928","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of ultrasound image restoration within a Bayesian framework. The distribution of the ultrasound image is assumed to be a generalized Gaussian distribution (GGD). The main contribution of this work is to propose a hierarchical Bayesian model for estimating the GGD parameters. The Bayesian estimators associated with this model are difficult to be expressed in closed form. Thus we investigate a Markov chain Monte Carlo method which is used to generate samples asymptotically distributed according to the posterior of interest. These generated samples are finally used to compute the Bayesian estimators of the GGD parameters. The performance of the proposed Bayesian model is tested with synthetic data and compared with the performance obtained with the expectation maximization algorithm.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"16 1","pages":"4577-4581"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper addresses the problem of ultrasound image restoration within a Bayesian framework. The distribution of the ultrasound image is assumed to be a generalized Gaussian distribution (GGD). The main contribution of this work is to propose a hierarchical Bayesian model for estimating the GGD parameters. The Bayesian estimators associated with this model are difficult to be expressed in closed form. Thus we investigate a Markov chain Monte Carlo method which is used to generate samples asymptotically distributed according to the posterior of interest. These generated samples are finally used to compute the Bayesian estimators of the GGD parameters. The performance of the proposed Bayesian model is tested with synthetic data and compared with the performance obtained with the expectation maximization algorithm.
利用广义高斯先验的层次贝叶斯模型恢复超声图像
本文讨论了在贝叶斯框架下的超声图像恢复问题。假设超声图像的分布为广义高斯分布(GGD)。这项工作的主要贡献是提出了一种用于估计GGD参数的分层贝叶斯模型。与该模型相关的贝叶斯估计量难以用封闭形式表示。因此,我们研究了一种马尔可夫链蒙特卡罗方法,该方法用于根据感兴趣的后验产生渐近分布的样本。这些生成的样本最后用于计算GGD参数的贝叶斯估计。用综合数据对贝叶斯模型的性能进行了测试,并与期望最大化算法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信