Mobile App Tagging

Ning Chen, S. Hoi, Shaohua Li, Xiaokui Xiao
{"title":"Mobile App Tagging","authors":"Ning Chen, S. Hoi, Shaohua Li, Xiaokui Xiao","doi":"10.1145/2835776.2835812","DOIUrl":null,"url":null,"abstract":"Mobile app tagging aims to assign a list of keywords indicating core functionalities, main contents, key features or concepts of a mobile app. Mobile app tags can be potentially useful for app ecosystem stakeholders or other parties to improve app search, browsing, categorization, and advertising, etc. However, most mainstream app markets, e.g., Google Play, Apple App Store, etc., currently do not explicitly support such tags for apps. To address this problem, we propose a novel auto mobile app tagging framework for annotating a given mobile app automatically, which is based on a search-based annotation paradigm powered by machine learning techniques. Specifically, given a novel query app without tags, our proposed framework (i) first explores online kernel learning techniques to retrieve a set of top-N similar apps that are semantically most similar to the query app from a large app repository; and (ii) then mines the text data of both the query app and the top-N similar apps to discover the most relevant tags for annotating the query app. To evaluate the efficacy of our proposed framework, we conduct an extensive set of experiments on a large real-world dataset crawled from Google Play. The encouraging results demonstrate that our technique is effective and promising.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Mobile app tagging aims to assign a list of keywords indicating core functionalities, main contents, key features or concepts of a mobile app. Mobile app tags can be potentially useful for app ecosystem stakeholders or other parties to improve app search, browsing, categorization, and advertising, etc. However, most mainstream app markets, e.g., Google Play, Apple App Store, etc., currently do not explicitly support such tags for apps. To address this problem, we propose a novel auto mobile app tagging framework for annotating a given mobile app automatically, which is based on a search-based annotation paradigm powered by machine learning techniques. Specifically, given a novel query app without tags, our proposed framework (i) first explores online kernel learning techniques to retrieve a set of top-N similar apps that are semantically most similar to the query app from a large app repository; and (ii) then mines the text data of both the query app and the top-N similar apps to discover the most relevant tags for annotating the query app. To evaluate the efficacy of our proposed framework, we conduct an extensive set of experiments on a large real-world dataset crawled from Google Play. The encouraging results demonstrate that our technique is effective and promising.
移动应用标签
手机应用标签旨在分配一系列关键字,以指示手机应用的核心功能、主要内容、关键功能或概念。手机应用标签可能对应用生态系统利益相关者或其他各方有用,可以改善应用搜索、浏览、分类和广告等。然而,大多数主流应用市场(如Google Play、Apple app Store等)目前并未明确支持此类应用标签。为了解决这个问题,我们提出了一个新的自动移动应用程序标记框架,用于自动注释给定的移动应用程序,该框架基于机器学习技术支持的基于搜索的注释范式。具体来说,给定一个新的没有标签的查询应用程序,我们提出的框架(i)首先探索在线内核学习技术,从大型应用程序存储库中检索一组top-N相似的应用程序,这些应用程序在语义上与查询应用程序最相似;(ii)然后挖掘查询应用程序和前n个类似应用程序的文本数据,以发现最相关的标签来注释查询应用程序。为了评估我们提出的框架的有效性,我们在从Google Play抓取的大型真实数据集上进行了广泛的实验。令人鼓舞的结果表明,我们的技术是有效的和有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信