Localization and symmetry breaking in the quantum quasiperiodic Ising glass

A. Chandran, C. Laumann
{"title":"Localization and symmetry breaking in the quantum quasiperiodic Ising glass","authors":"A. Chandran, C. Laumann","doi":"10.1103/physrevx.7.031061","DOIUrl":null,"url":null,"abstract":"Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a \\emph{quasiperiodic Ising glass} stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic and quasiperiodically alternating ground state phases with extended, localized and critically delocalized low energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-Andr\\'e duality which we develop. The quasiperiodic Ising glass may be realized in near term quantum optical experiments.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevx.7.031061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a \emph{quasiperiodic Ising glass} stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic and quasiperiodically alternating ground state phases with extended, localized and critically delocalized low energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-Andr\'e duality which we develop. The quasiperiodic Ising glass may be realized in near term quantum optical experiments.
量子准周期Ising玻璃的局域化与对称破缺
准周期调制可以通过定域孤立量子系统的自由度来防止它们的平衡。在本文中,我们证明了这样的系统可以表现出平衡中禁止的动态稳定的长程阶。具体来说,我们证明了准周期量子伊辛链中的对称破缺和局域化的相互作用产生了在所有能量密度下都稳定的\emph{准周期伊辛玻璃}。玻璃阶参量在熔融转变处消失,并伴有一个基本的奇点,平衡性质没有任何特征。零温度相图也出奇地丰富,由顺磁、铁磁和准周期性交替基态相组成,具有扩展的、局域的和临界非局域的低能量激发。该系统表现出一种不寻常的量子伊辛跃迁,其性质介于干净和无限随机伊辛跃迁之间。这些结果中有许多是根据我们对奥布里-安德烈对偶的几何推广得出的。准周期伊辛玻璃有望在近期量子光学实验中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信