Assessing the Pile Driving Risk Due to the Presence of Boulders

R. Stevens, Z. Westgate, J. Kocijan
{"title":"Assessing the Pile Driving Risk Due to the Presence of Boulders","authors":"R. Stevens, Z. Westgate, J. Kocijan","doi":"10.4043/29668-MS","DOIUrl":null,"url":null,"abstract":"\n Boulders are known to be present within foundation zone depths at some Atlantic East Coast wind energy development areas, which can make it difficult to level a piled jacket or template and can lead to the progressive collapse of the pile toe, causing premature refusal during pile driving. Although detection and avoidance are preferred over mitigation, numerical analysis methods are available to assess the risk of pile refusal, which allows for informed decisions on whether avoidance is required and what types of mitigation to consider during construction. Detailed numerical evaluation (using one-dimensional wave equation analyses and two- and three-dimensional finite difference and finite element modeling) was performed to develop a better understanding of stresses in the pile during driving. The numerical modeling evaluated the effect of strength, thickness, inclination, shoe length, wall thickness, and lateral continuity on pile stresses. A three-dimensional model of the pile and driving shoe subjected to stress-time histories was used to evaluate the stresses at the pile toe and at the transition from the pile to the driving shoe. Example results are presented to illustrate failure mechanisms of hard layers that include boulders, and high-level guidance is provided on operational sequences and potential contingency measures.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29668-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Boulders are known to be present within foundation zone depths at some Atlantic East Coast wind energy development areas, which can make it difficult to level a piled jacket or template and can lead to the progressive collapse of the pile toe, causing premature refusal during pile driving. Although detection and avoidance are preferred over mitigation, numerical analysis methods are available to assess the risk of pile refusal, which allows for informed decisions on whether avoidance is required and what types of mitigation to consider during construction. Detailed numerical evaluation (using one-dimensional wave equation analyses and two- and three-dimensional finite difference and finite element modeling) was performed to develop a better understanding of stresses in the pile during driving. The numerical modeling evaluated the effect of strength, thickness, inclination, shoe length, wall thickness, and lateral continuity on pile stresses. A three-dimensional model of the pile and driving shoe subjected to stress-time histories was used to evaluate the stresses at the pile toe and at the transition from the pile to the driving shoe. Example results are presented to illustrate failure mechanisms of hard layers that include boulders, and high-level guidance is provided on operational sequences and potential contingency measures.
考虑巨石存在的打桩风险评估
在一些大西洋东海岸风能开发地区,已知在基础区深度内存在巨石,这可能会使桩套或模板难以平整,并可能导致桩趾逐渐坍塌,导致打桩时过早拒绝。虽然检测和避免比缓解更重要,但可以使用数值分析方法来评估拒桩风险,从而可以就是否需要避免以及在施工期间考虑何种缓解措施做出明智的决定。详细的数值评估(使用一维波动方程分析和二维和三维有限差分和有限元建模)进行,以更好地了解桩在打桩过程中的应力。数值模拟评估了强度、厚度、倾角、鞋长、壁厚和横向连续性对桩应力的影响。采用应力-时程作用下的桩靴和桩靴三维模型,计算了桩趾处和桩靴向桩靴过渡处的应力。举例结果说明了包括巨石在内的硬层的破坏机制,并对操作顺序和潜在的应急措施提供了高层次的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信