Extending periodic maps on surfaces over the 4-sphere

IF 0.5 3区 数学 Q3 MATHEMATICS
Shicheng Wang, Zhongzi Wang
{"title":"Extending periodic maps on surfaces over the 4-sphere","authors":"Shicheng Wang, Zhongzi Wang","doi":"10.1142/S1793525322500108","DOIUrl":null,"url":null,"abstract":"Let $F_g$ be the closed orientable surface of genus $g$. We address the problem to extend torsion elements of the mapping class group ${\\mathcal{M}}(F_g)$ over the 4-sphere $S^4$. Let $w_g$ be a torsion element of maximum order in ${\\mathcal{M}}(F_g)$. Results including: (1) For each $g$, $w_g$ is periodically extendable over $S^4$ for some non-smooth embedding $e: F_g\\to S^4$, and not periodically extendable over $S^4$ for any smooth embedding $e: F_g\\to S^4$. (2) For each $g$, $w_g$ is extendable over $S^4$ for some smooth embedding $e: F_g\\to S^4$ if and only if $g=4k, 4k+3$. (3) Each torsion element of order $p$ in ${\\mathcal{M}}(F_g)$ is extendable over $S^4$ for some smooth embedding $e: F_g\\to S^4$ if either (i) $p=3^m$ and $g$ is even; or (ii) $p=5^m$ and $g\\ne 4k+2$; or (iii) $p=7^m$. Moreover the conditions on $g$ in (i) and (ii) can not be removed .","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1793525322500108","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $F_g$ be the closed orientable surface of genus $g$. We address the problem to extend torsion elements of the mapping class group ${\mathcal{M}}(F_g)$ over the 4-sphere $S^4$. Let $w_g$ be a torsion element of maximum order in ${\mathcal{M}}(F_g)$. Results including: (1) For each $g$, $w_g$ is periodically extendable over $S^4$ for some non-smooth embedding $e: F_g\to S^4$, and not periodically extendable over $S^4$ for any smooth embedding $e: F_g\to S^4$. (2) For each $g$, $w_g$ is extendable over $S^4$ for some smooth embedding $e: F_g\to S^4$ if and only if $g=4k, 4k+3$. (3) Each torsion element of order $p$ in ${\mathcal{M}}(F_g)$ is extendable over $S^4$ for some smooth embedding $e: F_g\to S^4$ if either (i) $p=3^m$ and $g$ is even; or (ii) $p=5^m$ and $g\ne 4k+2$; or (iii) $p=7^m$. Moreover the conditions on $g$ in (i) and (ii) can not be removed .
扩展4球表面上的周期映射
设$F_g$为$g$属的闭可定向曲面。我们解决了在4球$S^4$上扩展映射类群${\mathcal{M}}(F_g)$的扭转元素的问题。设$w_g$是${\mathcal{M}}(F_g)$中最大阶的扭转元素。结果包括:(1)对于每一个$g$,对于非光滑嵌入$e: F_g\到S^4$, $w_g$在$S^4$上是周期可扩展的,对于任何光滑嵌入$e: F_g\到S^4$, $w_g$在$S^4$上是不可周期可扩展的。(2)对于每一个$g$, $w_g$对于某些光滑嵌入$e: F_g\可扩展到$S^4$当且仅当$g=4k, 4k+3$。(3) ${\mathcal{M}}(F_g)$中$p$阶的每一个扭转元在$S^4$上对于某些光滑嵌入$e: F_g\可扩展到$S^4$,如果(i) $p=3^ M $和$g$是偶的;或(ii) $p=5^m$和$g\ne 4k+2$;或者(iii) p=7^m。而且(i)和(ii)中$g$的条件也不能去掉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信