Derin Öğrenme Yöntemleri Kullanılarak Havadan Elde Edilen Görüntüler Üzerinde Nesne Tespiti

Kemal Türkarslan, Fırat Hardalaç
{"title":"Derin Öğrenme Yöntemleri Kullanılarak Havadan Elde Edilen Görüntüler Üzerinde Nesne Tespiti","authors":"Kemal Türkarslan, Fırat Hardalaç","doi":"10.31202/ecjse.1135509","DOIUrl":null,"url":null,"abstract":"Son dönemlerde insan hayatı içerisinde gelişmiş uydu sistemlerinin ve insansız hava aracı teknolojilerinin kullanımı günden güne önemli derecede artmaktadır. Bu sistemler üzerinden havadan elde edilen görüntüler savunma sanayii, şehir planlama, tarım, film endüstrisi, eğlence, petrol ve maden arama gibi birçok alanda kullanılmaktadır. Bu gelişmeler doğrultusunda havadan elde edilen görüntüler üzerinde hem nitelik hem nicelik anlamında da artış olmuştur. Bununla beraber günümüzde bilgisayarlı görü dünyasında yapay zekâ algoritmaları üzerinde en çok çalışılan alanlardan biridir. Bilgisayarlı görü ile havadan elde edilen görüntüler üzerinde nesne tespit ve tanıma işlemi oldukça kolay hale gelmektedir. Bu çalışmada tek aşamalı nesne tespit modellerinden YOLOv5 ve SSD algoritmaları kullanılarak Google Earth, GF-2 ve JL-1 uyduları üzerinden toplanan görüntüler üzerinde gemi, liman, küçük araç vs gibi 15 farklı nesnenin tespit çalışmaları yapılmıştır. Google Colab platformu kullanılarak yapılan bu çalışmalarda görüntü bölme (image split) ve veri arttırımı (data augmentation) yöntemleri kullanılarak derin öğrenme modelleri üzerindeki etkisi karşılaştırılmıştır. Deneysel çalışmalar sonrasında elde edilen analiz sonuçları grafikler ile paylaşılmıştır.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1135509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Son dönemlerde insan hayatı içerisinde gelişmiş uydu sistemlerinin ve insansız hava aracı teknolojilerinin kullanımı günden güne önemli derecede artmaktadır. Bu sistemler üzerinden havadan elde edilen görüntüler savunma sanayii, şehir planlama, tarım, film endüstrisi, eğlence, petrol ve maden arama gibi birçok alanda kullanılmaktadır. Bu gelişmeler doğrultusunda havadan elde edilen görüntüler üzerinde hem nitelik hem nicelik anlamında da artış olmuştur. Bununla beraber günümüzde bilgisayarlı görü dünyasında yapay zekâ algoritmaları üzerinde en çok çalışılan alanlardan biridir. Bilgisayarlı görü ile havadan elde edilen görüntüler üzerinde nesne tespit ve tanıma işlemi oldukça kolay hale gelmektedir. Bu çalışmada tek aşamalı nesne tespit modellerinden YOLOv5 ve SSD algoritmaları kullanılarak Google Earth, GF-2 ve JL-1 uyduları üzerinden toplanan görüntüler üzerinde gemi, liman, küçük araç vs gibi 15 farklı nesnenin tespit çalışmaları yapılmıştır. Google Colab platformu kullanılarak yapılan bu çalışmalarda görüntü bölme (image split) ve veri arttırımı (data augmentation) yöntemleri kullanılarak derin öğrenme modelleri üzerindeki etkisi karşılaştırılmıştır. Deneysel çalışmalar sonrasında elde edilen analiz sonuçları grafikler ile paylaşılmıştır.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信