{"title":"QoS–Aware Web Service Composition using Weight Improved Particle Swarm Optimization","authors":"Laishram Jenny Chanu, Arnab Paul","doi":"10.22232/stj.2021.09.02.07","DOIUrl":null,"url":null,"abstract":"Lots of Web Services are available which differ in their QoS values but can perform a similar task. Discovery mechanism selects the best Web Service according to their QoS values and functional attributes. Cases arise, where the discovery mechanism fails, as a user’s complex query cannot be satisfied by a single Web Service. This can be solved by Web Service composition where multiple Web Services are combined to give a composite Web Service which meet user’s complex query. Our work is mainly focused on composition of Web Services that efficiently meets the user’s query. Different algorithms have been discussed and used by different researchers in this field. One of the most blooming topics is the use of evolutionary algorithms in optimization problems. In our work, we have chosen Particle Swarm Optimization Algorithm approach to discover the best efficient composition. Then, Weight Improved Particle Swarm Optimization Algorithm is used to improve the results which were found to be quite satisfying and efficient.","PeriodicalId":22107,"journal":{"name":"Silpakorn University Science and Technology Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silpakorn University Science and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22232/stj.2021.09.02.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lots of Web Services are available which differ in their QoS values but can perform a similar task. Discovery mechanism selects the best Web Service according to their QoS values and functional attributes. Cases arise, where the discovery mechanism fails, as a user’s complex query cannot be satisfied by a single Web Service. This can be solved by Web Service composition where multiple Web Services are combined to give a composite Web Service which meet user’s complex query. Our work is mainly focused on composition of Web Services that efficiently meets the user’s query. Different algorithms have been discussed and used by different researchers in this field. One of the most blooming topics is the use of evolutionary algorithms in optimization problems. In our work, we have chosen Particle Swarm Optimization Algorithm approach to discover the best efficient composition. Then, Weight Improved Particle Swarm Optimization Algorithm is used to improve the results which were found to be quite satisfying and efficient.