Managing Driving Modes in Automated Driving Systems

D. Insua, William N. Caballero, Roi Naveiro
{"title":"Managing Driving Modes in Automated Driving Systems","authors":"D. Insua, William N. Caballero, Roi Naveiro","doi":"10.1287/trsc.2021.1110","DOIUrl":null,"url":null,"abstract":"Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"103 1","pages":"1259-1278"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.
自动驾驶系统中的驾驶模式管理
目前的技术还无法生产出无需人工干预、可大规模部署的全自动车辆。考虑到这些限制预计将持续数十年,在可预见的未来,需要驾驶员控制半自动车辆的情况将仍然是现代道路的一个特征。在此,我们采用综合视角,同时考虑操作设计领域监督、驾驶员和环境监测、轨迹规划和驾驶员干预绩效评估。更具体地说,我们通过利用决策分析和贝叶斯预测为上述每个功能开发建模框架。利用该框架,根据异常管理原则,提出了一套驱动模式管理和预警排放的算法。通过一个模拟的案例研究说明并检验了所开发方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信