{"title":"Developing a multidisciplinary strategy to interpret the impact of missense mutations in XPA on NER activity and cisplatin sensitivity","authors":"Alexandra M. Blee, Bian Li, J. Capra, W. Chazin","doi":"10.3390/iecc2021-09192","DOIUrl":null,"url":null,"abstract":"Nucleotide excision repair (NER) is an essential DNA damage repair pathway that removes bulky DNA lesions formed by exposure to ultraviolet light, environmental toxins, and platinum (Pt)-based chemotherapeutic drugs that are a standard of care for many cancer types. Mutation or decreased NER gene expression in cancer correlates with improved patient survival after Pt-based chemotherapy. However, the impact of most missense mutations in NER genes is unknown, and few approaches exist to reliably identify nonrecurrent passenger mutations with functional consequences. In this study, a multidisciplinary strategy will be developed to predict, validate, and characterize NER-defective mutations in the essential NER scaffold protein Xeroderma Pigmentosum Complementation Group A (XPA). Computational analyses were used to score NER-deficient versus NER-proficient mutations for further study. Predicted NER-deficient XPA mutants are being expressed in human XPA-deficient cells and screened for both NER activity and cisplatin sensitivity. In-depth biophysical and structural studies are being implemented to elucidate mechanisms of dysfunction. Identifying NER-deficient mutations that may sensitize tumors to Pt-based chemotherapies represents a promising strategy to stratify patients for optimal treatment strategies.","PeriodicalId":20534,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iecc2021-09192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleotide excision repair (NER) is an essential DNA damage repair pathway that removes bulky DNA lesions formed by exposure to ultraviolet light, environmental toxins, and platinum (Pt)-based chemotherapeutic drugs that are a standard of care for many cancer types. Mutation or decreased NER gene expression in cancer correlates with improved patient survival after Pt-based chemotherapy. However, the impact of most missense mutations in NER genes is unknown, and few approaches exist to reliably identify nonrecurrent passenger mutations with functional consequences. In this study, a multidisciplinary strategy will be developed to predict, validate, and characterize NER-defective mutations in the essential NER scaffold protein Xeroderma Pigmentosum Complementation Group A (XPA). Computational analyses were used to score NER-deficient versus NER-proficient mutations for further study. Predicted NER-deficient XPA mutants are being expressed in human XPA-deficient cells and screened for both NER activity and cisplatin sensitivity. In-depth biophysical and structural studies are being implemented to elucidate mechanisms of dysfunction. Identifying NER-deficient mutations that may sensitize tumors to Pt-based chemotherapies represents a promising strategy to stratify patients for optimal treatment strategies.