{"title":"Route Travel Time Estimation on A Road Network Revisited: Heterogeneity, Proximity, Periodicity and Dynamicity","authors":"Haitao Yuan, Guoliang Li, Z. Bao","doi":"10.14778/3570690.3570691","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the problem of route travel time estimation on a road network and aim to boost its accuracy by capturing and utilizing spatio-temporal features from four significant aspects: heterogeneity, proximity, periodicity and dynamicity.\n Spatial-wise, we consider two forms of heterogeneity at link level in a road network: the turning ways between different links are heterogeneous which can make the travel time of the same link various; different links contain heterogeneous attributes and thereby lead to different travel time. In addition, we take into account the proximity: neighboring links have similar traffic patterns and lead to similar travel speeds. To this end, we build a link-connection graph to capture such heterogeneity and proximity.\n Temporal-wise, the weekly/daily periodicity of temporal background information (e.g., rush hours) and dynamic traffic conditions have significant impact on the travel time, which result in static and dynamic spatio-temporal features respectively. To capture such impacts, we regard the travel time/speed as a combination of static and dynamic parts, and extract many spatio-temporal relevant features for the prediction task.\n Talking about the methodology, it remains an open problem to build a generic learning model to boost the estimation accuracy. Hence, we design a novel encoder-decoder framework - The encoder uses the sequence attention model to encode dynamic features from the temporal-wise perspective. The decoder first uses the heterogeneous graph attention model to decode the static part of travel speed based on static spatio-temporal features, and then leverages the sequence attention model to decode the estimated travel time from spatial-wise perspective. Extensive experiments on real datasets verify the superiority of our method as well as the importance of the four aspects outlined above.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"5 1","pages":"393-405"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3570690.3570691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we revisit the problem of route travel time estimation on a road network and aim to boost its accuracy by capturing and utilizing spatio-temporal features from four significant aspects: heterogeneity, proximity, periodicity and dynamicity.
Spatial-wise, we consider two forms of heterogeneity at link level in a road network: the turning ways between different links are heterogeneous which can make the travel time of the same link various; different links contain heterogeneous attributes and thereby lead to different travel time. In addition, we take into account the proximity: neighboring links have similar traffic patterns and lead to similar travel speeds. To this end, we build a link-connection graph to capture such heterogeneity and proximity.
Temporal-wise, the weekly/daily periodicity of temporal background information (e.g., rush hours) and dynamic traffic conditions have significant impact on the travel time, which result in static and dynamic spatio-temporal features respectively. To capture such impacts, we regard the travel time/speed as a combination of static and dynamic parts, and extract many spatio-temporal relevant features for the prediction task.
Talking about the methodology, it remains an open problem to build a generic learning model to boost the estimation accuracy. Hence, we design a novel encoder-decoder framework - The encoder uses the sequence attention model to encode dynamic features from the temporal-wise perspective. The decoder first uses the heterogeneous graph attention model to decode the static part of travel speed based on static spatio-temporal features, and then leverages the sequence attention model to decode the estimated travel time from spatial-wise perspective. Extensive experiments on real datasets verify the superiority of our method as well as the importance of the four aspects outlined above.