Distributed Trajectory Planning for a Group of UGVs Carrying a Load Considerting Terrain Properties

Q4 Engineering
I. Ermolov, B. S. Lapin
{"title":"Distributed Trajectory Planning for a Group of UGVs Carrying a Load Considerting Terrain Properties","authors":"I. Ermolov, B. S. Lapin","doi":"10.17587/mau.24.327-334","DOIUrl":null,"url":null,"abstract":"The article studies a trajectory planning task for a group of UGVs with a consideration of wheels-terrain adhesion variation. Within this paper a brief analysis devoted to existing trajectory planning is done. It outcomes with a conclusion of a necessity to produce additional research within this topic. This paper suggests to use a Sampling-based method to solve this trajectory planning task. An algorithm of rapidly exploring random tree (RRT) is used as a basic algorithm. An advantage of this method (typical for Sampling-based methods) is a simplicity of various non-linear restrictions introduction (e.g. obstacles, differential restrictions etc.). In addition we should mention good potential for algorithm parallelization, because of tree structure of the algorithm. However there exists a shortage of the proposed methods — a high consumption of computational resources, and as an outcome a long calculus duration. This paper proposes to overcome this shortage via distributing of computation among UGVs — actors of a group. This is followed by a comparative analysis of distributed and centralized methods. Analysis shows that the main advantage of proposed method is that it can use almost all models of interaction between wheel and terrain. The latter can act a component for calculation of restrictions for motion acceleration over certain types of terrain. Within this paper we did not study models of interaction between wheel and terrain, but instead used empirical data of allowed values of tangential and normal accelerations for specific UGVs in particular conditions. In final part we present results of simulation witch confirm effectiveness of proposed methods.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekhatronika, Avtomatizatsiya, Upravlenie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/mau.24.327-334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The article studies a trajectory planning task for a group of UGVs with a consideration of wheels-terrain adhesion variation. Within this paper a brief analysis devoted to existing trajectory planning is done. It outcomes with a conclusion of a necessity to produce additional research within this topic. This paper suggests to use a Sampling-based method to solve this trajectory planning task. An algorithm of rapidly exploring random tree (RRT) is used as a basic algorithm. An advantage of this method (typical for Sampling-based methods) is a simplicity of various non-linear restrictions introduction (e.g. obstacles, differential restrictions etc.). In addition we should mention good potential for algorithm parallelization, because of tree structure of the algorithm. However there exists a shortage of the proposed methods — a high consumption of computational resources, and as an outcome a long calculus duration. This paper proposes to overcome this shortage via distributing of computation among UGVs — actors of a group. This is followed by a comparative analysis of distributed and centralized methods. Analysis shows that the main advantage of proposed method is that it can use almost all models of interaction between wheel and terrain. The latter can act a component for calculation of restrictions for motion acceleration over certain types of terrain. Within this paper we did not study models of interaction between wheel and terrain, but instead used empirical data of allowed values of tangential and normal accelerations for specific UGVs in particular conditions. In final part we present results of simulation witch confirm effectiveness of proposed methods.
考虑地形特性的一组载货ugv分布式轨迹规划
研究了考虑车轮-地形附着变化的一组ugv的轨迹规划问题。本文对现有的弹道规划进行了简要分析。它的结果是有必要在这个主题内进行额外的研究。本文建议采用基于采样的方法来解决这一轨迹规划问题。采用快速探索随机树(RRT)算法作为基本算法。这种方法的一个优点(典型的基于采样的方法)是各种非线性限制的简单引入(如障碍,微分限制等)。此外,由于算法的树形结构,我们应该提到算法并行化的良好潜力。然而,所提出的方法存在着计算资源消耗大、计算时间长等缺点。为了克服这一不足,本文提出了一种方法,即将计算量分配给ugv——一组参与者。然后对分布式和集中式方法进行比较分析。分析表明,该方法的主要优点是可以使用几乎所有的车轮与地形相互作用模型。后者可以作为计算特定类型地形上运动加速度限制的组件。在本文中,我们没有研究车轮与地形之间相互作用的模型,而是使用了特定ugv在特定条件下的切向和法向加速度允许值的经验数据。最后给出了仿真结果,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mekhatronika, Avtomatizatsiya, Upravlenie
Mekhatronika, Avtomatizatsiya, Upravlenie Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信