Convex Bodies of Constant Width in Spaces of Constant Curvature and the Extremal Area of Reuleaux Triangles

Pub Date : 2022-03-30 DOI:10.1556/012.2022.01528
K. Boroczky, Á. Sagmeister
{"title":"Convex Bodies of Constant Width in Spaces of Constant Curvature and the Extremal Area of Reuleaux Triangles","authors":"K. Boroczky, Á. Sagmeister","doi":"10.1556/012.2022.01528","DOIUrl":null,"url":null,"abstract":"Extending Blaschke and Lebesgue’s classical result in the Euclidean plane, it has been recently proved in spherical and the hyperbolic cases, as well, that Reuleaux triangles have the minimal area among convex domains of constant width D. We prove an essentially optimal stability version of this statement in each of the three types of surfaces of constant curvature. In addition, we summarize the fundamental properties of convex bodies of constant width in spaces of constant curvature, and provide a characterization in the hyperbolic case in terms of horospheres.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2022.01528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Extending Blaschke and Lebesgue’s classical result in the Euclidean plane, it has been recently proved in spherical and the hyperbolic cases, as well, that Reuleaux triangles have the minimal area among convex domains of constant width D. We prove an essentially optimal stability version of this statement in each of the three types of surfaces of constant curvature. In addition, we summarize the fundamental properties of convex bodies of constant width in spaces of constant curvature, and provide a characterization in the hyperbolic case in terms of horospheres.
分享
查看原文
等曲率空间中的等宽凸体与勒洛三角形的极值区
将Blaschke和Lebesgue的经典结果推广到欧几里得平面上,最近也证明了在球面和双曲情况下,勒洛三角形在等宽d的凸域上具有最小的面积。我们在三种常曲率曲面上分别证明了这一结论的最优稳定性版本。此外,我们总结了等曲率空间中等宽凸体的基本性质,并给出了在双曲情况下用占星球的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信