{"title":"Analysis of the brachistochronic motion of a variable mass nonholonomic mechanical system","authors":"B. Jeremić, R. Radulović, A. Obradović","doi":"10.2298/TAM150723002J","DOIUrl":null,"url":null,"abstract":"The paper considers the brachistochronic motion of a variable mass nonholonomic mechanical system [3] in a horizontal plane, between two specified positions. Variable mass particles are interconnected by a lightweight mechanism of the ‘pitchfork’ type. The law of the time-rate of mass variation of the particles, as well as relative velocities of the expelled particles, as a function of time, are known. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are created based on the general theorems of dynamics of a variable mass mechanical system [5]. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved, in this case, as the simplest task of optimal control by applying Pontryagin’s maximum principle [1]. A corresponding two-point boundary value problem (TPBVP) of the system of ordinary nonlinear differential equations is obtained, which, in a general case, has to be numerically solved [2]. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are determined. The analysis of the brachistochronic motion for different values of the initial position of a variable mass particle B is presented. Also, the interval of values of the initial position of a variable mass particle B, for which there are the TPBVP solutions, is determined.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"2 1","pages":"19-32"},"PeriodicalIF":0.7000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM150723002J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
The paper considers the brachistochronic motion of a variable mass nonholonomic mechanical system [3] in a horizontal plane, between two specified positions. Variable mass particles are interconnected by a lightweight mechanism of the ‘pitchfork’ type. The law of the time-rate of mass variation of the particles, as well as relative velocities of the expelled particles, as a function of time, are known. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are created based on the general theorems of dynamics of a variable mass mechanical system [5]. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved, in this case, as the simplest task of optimal control by applying Pontryagin’s maximum principle [1]. A corresponding two-point boundary value problem (TPBVP) of the system of ordinary nonlinear differential equations is obtained, which, in a general case, has to be numerically solved [2]. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are determined. The analysis of the brachistochronic motion for different values of the initial position of a variable mass particle B is presented. Also, the interval of values of the initial position of a variable mass particle B, for which there are the TPBVP solutions, is determined.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.