Mechanosensing through talin 1 contributes to tissue mechanical homeostasis.

Q4 Social Sciences
Lua Nova Pub Date : 2024-01-26 DOI:10.1101/2023.09.03.556084
Manasa V L Chanduri, Abhishek Kumar, Dar Weiss, Nir Emuna, Igor Barsukov, Muisi Shi, Keiichiro Tanaka, Xinzhe Wang, Amit Datye, Jean Kanyo, Florine Collin, TuKiet Lam, Udo D Schwarz, Suxia Bai, Timothy Nottoli, Benjamin T Goult, Jay D Humphrey, Martin A Schwartz
{"title":"Mechanosensing through talin 1 contributes to tissue mechanical homeostasis.","authors":"Manasa V L Chanduri, Abhishek Kumar, Dar Weiss, Nir Emuna, Igor Barsukov, Muisi Shi, Keiichiro Tanaka, Xinzhe Wang, Amit Datye, Jean Kanyo, Florine Collin, TuKiet Lam, Udo D Schwarz, Suxia Bai, Timothy Nottoli, Benjamin T Goult, Jay D Humphrey, Martin A Schwartz","doi":"10.1101/2023.09.03.556084","DOIUrl":null,"url":null,"abstract":"<p><p>It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.</p>","PeriodicalId":35204,"journal":{"name":"Lua Nova","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lua Nova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.03.556084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.

通过滑蛋白 1 进行机械传感有助于组织的机械平衡。
人们普遍认为,组织的机械特性主要由细胞外基质(ECM)决定,并由其主动维持。然而,尽管组织机械稳态对生物学和医学具有广泛的重要性,但人们对其了解甚少。为了探索这一假说,我们对机械敏感蛋白 talin1 进行了突变,从而改变了细胞对 ECM 硬度的感知。在 talin1 杆状结构域螺旋束 1 和 2(R1 和 R2)之间的一个新的机械敏感位点的突变改变了细胞的硬度感应曲线,使细胞能够在顺应性基质上扩散并施加张力。R1-R2界面的打开促进了ARP2/3复合体亚基ARPC5L的结合,而ARPC5L介导了硬度感应的改变。携带这些突变的小鼠的升主动脉显示出顺应性增加、纤维胶原减少以及在较低压力下破裂。这些结果共同证明,细胞硬度传感调节了 ECM 的机械特性。因此,这些数据直接支持了机械平衡假说,并确定了有助于这一机制的滑石蛋白内的新型机械敏感相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lua Nova
Lua Nova Social Sciences-Sociology and Political Science
CiteScore
0.80
自引率
0.00%
发文量
13
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信