Cortical Spheroid Model for Studying the Effects of Ischemic Brain Injury.

In vitro models Pub Date : 2023-03-29 eCollection Date: 2023-04-01 DOI:10.1007/s44164-023-00046-z
Rachel M McLaughlin, Ilayda Top, Amanda Laguna, Christien Hernandez, Harrison Katz, Liane L Livi, Liana Kramer, Samantha G Zambuto, Diane Hoffman-Kim
{"title":"Cortical Spheroid Model for Studying the Effects of Ischemic Brain Injury.","authors":"Rachel M McLaughlin, Ilayda Top, Amanda Laguna, Christien Hernandez, Harrison Katz, Liane L Livi, Liana Kramer, Samantha G Zambuto, Diane Hoffman-Kim","doi":"10.1007/s44164-023-00046-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Ischemic brain injury occurs when there is reduced or complete disruption of blood flow to a brain region, such as in stroke or severe traumatic brain injury. Even short interruptions can lead to devastating effects including excitotoxicity and widespread cell death. Despite many decades of research, there are still very few therapeutic options for patients suffering from brain ischemia.</p><p><strong>Methods: </strong>We developed an in vitro brain ischemia model using our previously established 3D spheroids derived from primary postnatal rat cortex. These spheroids provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. This model is cost-effective, highly reproducible, and can be produced in a high-throughput manner, making it an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 h.</p><p><strong>Results: </strong>Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of ischemic brain injury, including a decrease in metabolism, an increase in neural dysfunction, breakdown in the neurovascular unit, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP after oxygen-glucose deprivation, was partially neuroprotective, and enhanced the expression of laminin.</p><p><strong>Conclusion: </strong>This 3D cortical spheroid model provides a platform for studying ischemic injury and has the potential for screening therapeutics.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-023-00046-z.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"71 1","pages":"25-41"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-023-00046-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Ischemic brain injury occurs when there is reduced or complete disruption of blood flow to a brain region, such as in stroke or severe traumatic brain injury. Even short interruptions can lead to devastating effects including excitotoxicity and widespread cell death. Despite many decades of research, there are still very few therapeutic options for patients suffering from brain ischemia.

Methods: We developed an in vitro brain ischemia model using our previously established 3D spheroids derived from primary postnatal rat cortex. These spheroids provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. This model is cost-effective, highly reproducible, and can be produced in a high-throughput manner, making it an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 h.

Results: Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of ischemic brain injury, including a decrease in metabolism, an increase in neural dysfunction, breakdown in the neurovascular unit, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP after oxygen-glucose deprivation, was partially neuroprotective, and enhanced the expression of laminin.

Conclusion: This 3D cortical spheroid model provides a platform for studying ischemic injury and has the potential for screening therapeutics.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-023-00046-z.

研究缺血性脑损伤影响的皮质球体模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信