Influence of Core and Shield of Coil on Skin Depth in Eddy Current Testing

IF 1 4区 材料科学 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Maosen Chen, Yanfei Liao, Z. Zeng, Junming Lin, Yonghong Dai
{"title":"Influence of Core and Shield of Coil on Skin Depth in Eddy Current Testing","authors":"Maosen Chen, Yanfei Liao, Z. Zeng, Junming Lin, Yonghong Dai","doi":"10.1080/09349847.2022.2050861","DOIUrl":null,"url":null,"abstract":"ABSTRACT In eddy current (EC) nondestructive testing, coil is usually wound on core or covered by shield to improve the sensitivity of defect detection and ability of anti-interference of the probe. However, when core or shield is used, the magnetic field will be redistributed, resulting in a change in the speed of EC attenuation in the depth direction. The purpose of this paper is to reveal the influence of core and shield on skin depth of EC. The results of the finite element analysis show that applying core or shield on coil results in smaller skin depth and the skin depth decreases as the core or shield approaches the test sample. In addition, when both core and shield are used, the reduction of skin depth is minimal if both core and shield are ferromagnetic. The simulation results are verified by experiment.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"71 1","pages":"45 - 58"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2022.2050861","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In eddy current (EC) nondestructive testing, coil is usually wound on core or covered by shield to improve the sensitivity of defect detection and ability of anti-interference of the probe. However, when core or shield is used, the magnetic field will be redistributed, resulting in a change in the speed of EC attenuation in the depth direction. The purpose of this paper is to reveal the influence of core and shield on skin depth of EC. The results of the finite element analysis show that applying core or shield on coil results in smaller skin depth and the skin depth decreases as the core or shield approaches the test sample. In addition, when both core and shield are used, the reduction of skin depth is minimal if both core and shield are ferromagnetic. The simulation results are verified by experiment.
涡流检测中线圈的铁心和屏蔽对趋肤深度的影响
在涡流无损检测中,为了提高检测缺陷的灵敏度和探头的抗干扰能力,通常将线圈绕在铁芯上或用屏蔽罩覆盖。然而,当使用铁芯或屏蔽时,磁场将被重新分配,导致EC在深度方向上的衰减速度发生变化。本文的目的是揭示电磁芯和屏蔽层对电磁芯集肤深度的影响。有限元分析结果表明,在线圈上施加铁芯或屏蔽层可使趋肤深度减小,且趋肤深度随铁芯或屏蔽层靠近试样而减小。此外,当铁芯和屏蔽同时使用时,如果铁芯和屏蔽都是铁磁性的,则趋肤深度的减小最小。通过实验验证了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in Nondestructive Evaluation
Research in Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信