Transformer-based Localization from Embodied Dialog with Large-scale Pre-training

Q3 Environmental Science
Meera Hahn, James M. Rehg
{"title":"Transformer-based Localization from Embodied Dialog with Large-scale Pre-training","authors":"Meera Hahn, James M. Rehg","doi":"10.48550/arXiv.2210.04864","DOIUrl":null,"url":null,"abstract":"We address the challenging task of Localization via Embodied Dialog (LED). Given a dialog from two agents, an Observer navigating through an unknown environment and a Locator who is attempting to identify the Observer’s location, the goal is to predict the Observer’s final location in a map. We develop a novel LED-Bert architecture and present an effective pretraining strategy. We show that a graph-based scene representation is more effective than the top-down 2D maps used in prior works. Our approach outperforms previous baselines.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"108 1","pages":"295-301"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.04864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

We address the challenging task of Localization via Embodied Dialog (LED). Given a dialog from two agents, an Observer navigating through an unknown environment and a Locator who is attempting to identify the Observer’s location, the goal is to predict the Observer’s final location in a map. We develop a novel LED-Bert architecture and present an effective pretraining strategy. We show that a graph-based scene representation is more effective than the top-down 2D maps used in prior works. Our approach outperforms previous baselines.
基于变压器的大规模预训练嵌入对话定位
我们通过嵌入式对话(LED)解决了本地化的挑战性任务。给定来自两个代理的对话,一个是在未知环境中导航的观察者,另一个是试图识别观察者位置的定位器,目标是预测观察者在地图上的最终位置。我们开发了一种新的LED-Bert架构,并提出了一种有效的预训练策略。我们表明,基于图形的场景表示比先前工作中使用的自上而下的2D地图更有效。我们的方法优于以前的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信