Visual Exploration of Multidimensional Feature Space of Biological Data

Tom Arodz, K. Boryczko, W. Dzwinel, Marcin Kurdziel, D. Yuen
{"title":"Visual Exploration of Multidimensional Feature Space of Biological Data","authors":"Tom Arodz, K. Boryczko, W. Dzwinel, Marcin Kurdziel, D. Yuen","doi":"10.1109/VIS.2005.115","DOIUrl":null,"url":null,"abstract":"Molecular biology is a source of vast quantities of information. Nucleotide sequences, gene expression patterns, protein abundances, sequences and structures, drug activities, gene and metabolic networks are being harvested at laboratories throughout the world. The collected data can be represented by multidimensional feature vectors or by descriptors, which are less formalized, yet still allow one to define similarity relations among objects. Both data representations can be analyzed using data mining and pattern recognition tools. Such tools should allow for interactive, 3-D visual exploration of multidimensional data space by the bio-specialist, rather than for automatic data processing.","PeriodicalId":91181,"journal":{"name":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","volume":"26 1","pages":"90"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS.2005.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Molecular biology is a source of vast quantities of information. Nucleotide sequences, gene expression patterns, protein abundances, sequences and structures, drug activities, gene and metabolic networks are being harvested at laboratories throughout the world. The collected data can be represented by multidimensional feature vectors or by descriptors, which are less formalized, yet still allow one to define similarity relations among objects. Both data representations can be analyzed using data mining and pattern recognition tools. Such tools should allow for interactive, 3-D visual exploration of multidimensional data space by the bio-specialist, rather than for automatic data processing.
生物数据多维特征空间的可视化探索
分子生物学是大量信息的来源。世界各地的实验室正在收集核苷酸序列、基因表达模式、蛋白质丰度、序列和结构、药物活性、基因和代谢网络。收集到的数据可以用多维特征向量或描述符表示,这些描述符形式化程度较低,但仍然允许定义对象之间的相似关系。这两种数据表示都可以使用数据挖掘和模式识别工具进行分析。这些工具应该允许生物专家对多维数据空间进行交互式的三维视觉探索,而不是自动数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信