{"title":"On free variables in interior point methods","authors":"C. Mészáros","doi":"10.1080/10556789808805689","DOIUrl":null,"url":null,"abstract":"Interior point methods, especially the algorithms for linear programming problems are sensitive if there are unconstrained (free) variables in the problem. While replacing a free variable by two nonnegative ones may cause numerical instabilities, the implicit handling results in a semidefinite scaling matrix at each interior point iteration. In the paper we investigate the effects if the scaling matrix is regularized. Our analysis will prove that the effect of the regularization can be easily monitored and corrected if necessary. We describe the regularization scheme mainly for the efficient handling of free variables, but a similar analysis can be made for the case, when the small scaling factors are raised to larger values to improve the numerical stability of the systems that define the searcn direction. We will show the superiority of our approach over the variable replacement method on a set of test problems arising from water management application","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"5 1","pages":"121-139"},"PeriodicalIF":1.4000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789808805689","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 26
Abstract
Interior point methods, especially the algorithms for linear programming problems are sensitive if there are unconstrained (free) variables in the problem. While replacing a free variable by two nonnegative ones may cause numerical instabilities, the implicit handling results in a semidefinite scaling matrix at each interior point iteration. In the paper we investigate the effects if the scaling matrix is regularized. Our analysis will prove that the effect of the regularization can be easily monitored and corrected if necessary. We describe the regularization scheme mainly for the efficient handling of free variables, but a similar analysis can be made for the case, when the small scaling factors are raised to larger values to improve the numerical stability of the systems that define the searcn direction. We will show the superiority of our approach over the variable replacement method on a set of test problems arising from water management application
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.