Bradley R. Williams, Daniel A. Bacon-Brown, R. Edwards, Stew Nielson, A. Farhang, Stuart Johnson, R. Petrova, M. George, Shaun Ogden
{"title":"Metalenses for visible wavelengths: NIL volume manufacturing","authors":"Bradley R. Williams, Daniel A. Bacon-Brown, R. Edwards, Stew Nielson, A. Farhang, Stuart Johnson, R. Petrova, M. George, Shaun Ogden","doi":"10.1117/12.2649026","DOIUrl":null,"url":null,"abstract":"Building visible wavelength metalenses presents significant challenges for nanofabrication due to the high aspect ratio features and tight tolerances required for good performance. The requisite phase profiles often impart dramatic changes in nanostructure fill fraction, which are challenging to pattern via optical lithography. One metasurface of interest is a spatially-varying array of nanopillars ranging in diameter from 70nm - 180nm, with gaps between pillars ranging from 180nm - 70nm. To manufacture this and other metastructured devices in volume, Nanoimprint Lithography (NIL) becomes a key enabling technology due to its demonstrated scalability and ability to reliably replicate nanostructures with extremely tight tolerances, even with variations in local spacing. Another requirement for building metasurfaces for visible light applications, is the ability to pattern full wafers with good repeatability in high volume. Moxtek has therefore set up a 200 mm diameter manufacturing demonstration, where high aspect ratio nanopillars of varying diameter are etched from high refractive index material in order to make visible wavelength metalenses. In this work, metalenses designed for green light were fabricated with both a square grid arrangement and with a radially periodic arrangement. The metalenses were also given a protective coating and the focusing performance was characterized. The manufacturing process evaluation has three key components: 1) characterize the processing bias (from design dimensions to final nanostructure dimensions) at various stages; 2) monitor process stability and repeatability using metrology test devices distributed over the wafer; 3) characterize and verify functioning optical devices. Collectively, we have demonstrated volume manufacturing of metalenses for the visible regime, which was made possible by high precision NIL and Etch processes.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":"35 1","pages":"1243209 - 1243209-7"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2649026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Building visible wavelength metalenses presents significant challenges for nanofabrication due to the high aspect ratio features and tight tolerances required for good performance. The requisite phase profiles often impart dramatic changes in nanostructure fill fraction, which are challenging to pattern via optical lithography. One metasurface of interest is a spatially-varying array of nanopillars ranging in diameter from 70nm - 180nm, with gaps between pillars ranging from 180nm - 70nm. To manufacture this and other metastructured devices in volume, Nanoimprint Lithography (NIL) becomes a key enabling technology due to its demonstrated scalability and ability to reliably replicate nanostructures with extremely tight tolerances, even with variations in local spacing. Another requirement for building metasurfaces for visible light applications, is the ability to pattern full wafers with good repeatability in high volume. Moxtek has therefore set up a 200 mm diameter manufacturing demonstration, where high aspect ratio nanopillars of varying diameter are etched from high refractive index material in order to make visible wavelength metalenses. In this work, metalenses designed for green light were fabricated with both a square grid arrangement and with a radially periodic arrangement. The metalenses were also given a protective coating and the focusing performance was characterized. The manufacturing process evaluation has three key components: 1) characterize the processing bias (from design dimensions to final nanostructure dimensions) at various stages; 2) monitor process stability and repeatability using metrology test devices distributed over the wafer; 3) characterize and verify functioning optical devices. Collectively, we have demonstrated volume manufacturing of metalenses for the visible regime, which was made possible by high precision NIL and Etch processes.
期刊介绍:
Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged.
It has been established for the publication of high quality original papers from the following fields:
Optical Design and Applications,
Image Processing
Metamaterials,
Optoelectronic Materials,
Micro-Opto-Electro-Mechanical Systems,
Infrared Physics and Technology,
Modelling of Optoelectronic Devices, Semiconductor Lasers
Technology and Fabrication of Optoelectronic Devices,
Photonic Crystals,
Laser Physics, Technology and Applications,
Optical Sensors and Applications,
Photovoltaics,
Biomedical Optics and Photonics