Stochastic stability of adaptive quantizers for Markov sources

S. Yüksel
{"title":"Stochastic stability of adaptive quantizers for Markov sources","authors":"S. Yüksel","doi":"10.1109/ISIT.2009.5205725","DOIUrl":null,"url":null,"abstract":"A stochastic stability result for a class of adaptive quantizers which were introduced by Goodman and Gersho is presented. We consider a case where the input process is a linear Markov source which is not necessarily stable. We present a stochastic stability result for the estimation error and the quantizer, thus generalizing the stability result of Goodman and Gersho to a Markovian, and furthermore to an unstable, setting. Furthermore, it is shown that, there exists a unique invariant distribution for the state and the quantizer parameters under mild irreducibility conditions. The second moment under the invariant distribution is finite, if the system noise is Gaussian.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A stochastic stability result for a class of adaptive quantizers which were introduced by Goodman and Gersho is presented. We consider a case where the input process is a linear Markov source which is not necessarily stable. We present a stochastic stability result for the estimation error and the quantizer, thus generalizing the stability result of Goodman and Gersho to a Markovian, and furthermore to an unstable, setting. Furthermore, it is shown that, there exists a unique invariant distribution for the state and the quantizer parameters under mild irreducibility conditions. The second moment under the invariant distribution is finite, if the system noise is Gaussian.
马尔可夫源自适应量化器的随机稳定性
给出了Goodman和Gersho引入的一类自适应量化器的随机稳定性结果。我们考虑一个输入过程是线性马尔可夫源的情况,它不一定是稳定的。我们给出了估计误差和量化器的随机稳定性结果,从而将Goodman和Gersho的稳定性结果推广到马尔可夫情况,进而推广到不稳定情况。进一步证明了在轻度不可约条件下,态和量化器参数存在唯一不变分布。当系统噪声为高斯时,不变分布下的二阶矩是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信