A. Albalahi, Akbar Ali, A. Alanazi, A. A. Bhatti, Amjad E. Hamza
{"title":"Harmonic-Arithmetic Index of (Molecular) Trees","authors":"A. Albalahi, Akbar Ali, A. Alanazi, A. A. Bhatti, Amjad E. Hamza","doi":"10.47443/cm.2023.008","DOIUrl":null,"url":null,"abstract":"Let $G$ be a graph. Denote by $d_x$, $E(G)$, and $D(G)$ the degree of a vertex $x$ in $G$, the set of edges of $G$, and the degree set of $G$, respectively. This paper proposes to investigate (both from mathematical and applications points of view) those graph invariants of the form $\\sum_{uv\\in E(G)}\\varphi(d_v,d_w)$ in which $\\varphi$ can be defined either using well-known means of $d_v$ and $d_w$ (for example: arithmetic, geometric, harmonic, quadratic, and cubic means) or by applying a basic arithmetic operation (addition, subtraction, multiplication, and division) on any of two such means, provided that $\\varphi$ is a non-negative and symmetric function defined on the Cartesian square of $D(G)$. Many existing well-known graph invariants can be defined in this way; however, there are many exceptions too. One of such uninvestigated graph invariants is the harmonic-arithmetic (HA) index, which is obtained from the aforementioned setting by taking $\\varphi$ as the ratio of the harmonic and arithmetic means of $d_v$ and $d_w$. A molecular tree is a tree whose maximum degree does not exceed four. Given the class of all (molecular) trees with a fixed order, graphs that have the largest or least value of the HA index are completely characterized in this paper.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2023.008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let $G$ be a graph. Denote by $d_x$, $E(G)$, and $D(G)$ the degree of a vertex $x$ in $G$, the set of edges of $G$, and the degree set of $G$, respectively. This paper proposes to investigate (both from mathematical and applications points of view) those graph invariants of the form $\sum_{uv\in E(G)}\varphi(d_v,d_w)$ in which $\varphi$ can be defined either using well-known means of $d_v$ and $d_w$ (for example: arithmetic, geometric, harmonic, quadratic, and cubic means) or by applying a basic arithmetic operation (addition, subtraction, multiplication, and division) on any of two such means, provided that $\varphi$ is a non-negative and symmetric function defined on the Cartesian square of $D(G)$. Many existing well-known graph invariants can be defined in this way; however, there are many exceptions too. One of such uninvestigated graph invariants is the harmonic-arithmetic (HA) index, which is obtained from the aforementioned setting by taking $\varphi$ as the ratio of the harmonic and arithmetic means of $d_v$ and $d_w$. A molecular tree is a tree whose maximum degree does not exceed four. Given the class of all (molecular) trees with a fixed order, graphs that have the largest or least value of the HA index are completely characterized in this paper.
期刊介绍:
Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.