{"title":"Recent Progress on Synthesis and Bio-activities of \nTetrahydropyrimidine-2-one derivatives","authors":"Mayuresh Bhosale, K. Sarvanan, N. Dighe","doi":"10.52711/2349-2988.2021.00035","DOIUrl":null,"url":null,"abstract":"This review covers up synthesis, characterization and Pharmacological activities of various derivatives of 1,2,3,4-Tetrahydropyrimidine-2-one, including recent mechanistic advances, new building blocks and new pharmacological disclosures. Tetrahydropyrimidines (THPs) are one of the most important systems among the heterocycles. These compounds reported to have less toxicity to human and animals. Various synthesis strategies have been reported for different derivatives of Tetrahydropyrimidines, mainly these involves Biginelli reaction (condensation) consisting of one pot synthesis of 1,2,3,4-Tetrahydropyrimidine derivatives using urea, β-keto ester and aldehyde. These derivatives also forms important part as intermediate in the manufacture of various Pharmaceuticals. Techniques such as infrared spectroscopy, liquid chromatography-mass spectrometry, 1H NMR and 13C NMR spectrometry along with single crystal X-ray diffraction has been reported for structural characterization of these derivatives. U.S. National Library of Medicines, NIH and European PMC have reported many these derivatives. Some of derivatives have reported to have promising anti-bacterial, cytotoxic, antifungal, anti-inflammatory activities. Recently Ultrasound and Microwave promoted synthesis has shown promising results in synthesis of these derivatives. Many exciting prospects await for its exploitation in this fields.","PeriodicalId":20915,"journal":{"name":"Research Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52711/2349-2988.2021.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review covers up synthesis, characterization and Pharmacological activities of various derivatives of 1,2,3,4-Tetrahydropyrimidine-2-one, including recent mechanistic advances, new building blocks and new pharmacological disclosures. Tetrahydropyrimidines (THPs) are one of the most important systems among the heterocycles. These compounds reported to have less toxicity to human and animals. Various synthesis strategies have been reported for different derivatives of Tetrahydropyrimidines, mainly these involves Biginelli reaction (condensation) consisting of one pot synthesis of 1,2,3,4-Tetrahydropyrimidine derivatives using urea, β-keto ester and aldehyde. These derivatives also forms important part as intermediate in the manufacture of various Pharmaceuticals. Techniques such as infrared spectroscopy, liquid chromatography-mass spectrometry, 1H NMR and 13C NMR spectrometry along with single crystal X-ray diffraction has been reported for structural characterization of these derivatives. U.S. National Library of Medicines, NIH and European PMC have reported many these derivatives. Some of derivatives have reported to have promising anti-bacterial, cytotoxic, antifungal, anti-inflammatory activities. Recently Ultrasound and Microwave promoted synthesis has shown promising results in synthesis of these derivatives. Many exciting prospects await for its exploitation in this fields.