Jean-Philippe Tavella, M. Caujolle, S. Vialle, Cherifa Dad, Charles Tan, Gilles Plessis, Mathieu Schumann, A. Cuccuru, S. Revol
{"title":"Toward an accurate and fast hybrid multi-simulation with the FMI-CS standard","authors":"Jean-Philippe Tavella, M. Caujolle, S. Vialle, Cherifa Dad, Charles Tan, Gilles Plessis, Mathieu Schumann, A. Cuccuru, S. Revol","doi":"10.1109/ETFA.2016.7733616","DOIUrl":null,"url":null,"abstract":"Multi-simulation in the context of future smart electrical grids consists in associating components modeling different physical domains, but also their local or global control. Our DACCOSIM multi-simulation environment is based on the version 2.0 of the FMI-CS (Functional Mock-up Interface for Co-Simulation) standard maintained by the Modelica Association. It has been specifically designed to run large-scale and complex systems on a single PC or a cluster of multicore nodes. But it is quite challenging to accurately simulate FMUs-composed systems involving predictable and unpredictable events while preserving the system overall performance. This paper presents some additions to the FMI-CS standard aiming to improve the accuracy and the performance of distributed multi-simulations involving a mix of both time steps and various kinds of events. The proposed FMI-CS primitives are explained, as well as the Master Algorithm strategies to exploit them efficiently.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"41 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Multi-simulation in the context of future smart electrical grids consists in associating components modeling different physical domains, but also their local or global control. Our DACCOSIM multi-simulation environment is based on the version 2.0 of the FMI-CS (Functional Mock-up Interface for Co-Simulation) standard maintained by the Modelica Association. It has been specifically designed to run large-scale and complex systems on a single PC or a cluster of multicore nodes. But it is quite challenging to accurately simulate FMUs-composed systems involving predictable and unpredictable events while preserving the system overall performance. This paper presents some additions to the FMI-CS standard aiming to improve the accuracy and the performance of distributed multi-simulations involving a mix of both time steps and various kinds of events. The proposed FMI-CS primitives are explained, as well as the Master Algorithm strategies to exploit them efficiently.