Topological Efficiency of Some Product Graphs

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
K. Pattabiraman, T. Suganya
{"title":"Topological Efficiency of Some Product Graphs","authors":"K. Pattabiraman, T. Suganya","doi":"10.22052/IJMC.2017.82177.1280","DOIUrl":null,"url":null,"abstract":"The topological efficiency index of a connected graph $G,$ denoted by $rho (G),$ is defined as $rho(G)=frac{2W(G)}{left|V(G)right|underline w(G)},$ where $underline w(G)=text { min }left{w_v(G):vin V(G)right}$ and $W(G)$ is the Wiener index of $G.$ In this paper, we obtain the value of topological efficiency index for some composite graphs such as tensor product, strong product, symmetric difference and disjunction of two connected graphs. Further, we have obtained the topological efficiency index for a double graph of a given graph.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.82177.1280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The topological efficiency index of a connected graph $G,$ denoted by $rho (G),$ is defined as $rho(G)=frac{2W(G)}{left|V(G)right|underline w(G)},$ where $underline w(G)=text { min }left{w_v(G):vin V(G)right}$ and $W(G)$ is the Wiener index of $G.$ In this paper, we obtain the value of topological efficiency index for some composite graphs such as tensor product, strong product, symmetric difference and disjunction of two connected graphs. Further, we have obtained the topological efficiency index for a double graph of a given graph.
某些积图的拓扑效率
连通图$G的拓扑效率指数,$用$rho(G)表示,$定义为$rho(G)=frac{2W(G)}{左|V(G)右|下划线w(G)},$其中$下划线w(G)=text {min}左{w_v(G):vin V(G)右}$,$ w(G) $是$G的Wiener指数。本文给出了两个连通图的张量积、强积、对称差分和不相交等复合图的拓扑效率指标的值。进一步,我们得到了给定图的双图的拓扑效率指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信