Arijit Ghosh, Navneet Kaur, Abhishek Kumar, C. Goswami
{"title":"Why individual thermo sensation and pain perception varies? Clue of disruptive mutations in TRPVs from 2504 human genome data","authors":"Arijit Ghosh, Navneet Kaur, Abhishek Kumar, C. Goswami","doi":"10.1080/19336950.2016.1162365","DOIUrl":null,"url":null,"abstract":"ABSTRACT Every individual varies in character and so do their sensory functions and perceptions. The molecular mechanism and the molecular candidates involved in these processes are assumed to be similar if not same. So far several molecular factors have been identified which are fairly conserved across the phylogenetic tree and are involved in these complex sensory functions. Among all, members belonging to Transient Receptor Potential (TRP) channels have been widely characterized for their involvement in thermo-sensation. These include TRPV1 to TRPV4 channels which reveal complex thermo-gating behavior in response to changes in temperature. The molecular evolution of these channels is highly correlative with the thermal response of different species. However, recent 2504 human genome data suggest that these thermo-sensitive TRPV channels are highly variable and carry possible deleterious mutations in human population. These unexpected findings may explain the individual differences in terms of complex sensory functions.","PeriodicalId":9750,"journal":{"name":"Channels","volume":"1 1","pages":"339 - 345"},"PeriodicalIF":3.3000,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336950.2016.1162365","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT Every individual varies in character and so do their sensory functions and perceptions. The molecular mechanism and the molecular candidates involved in these processes are assumed to be similar if not same. So far several molecular factors have been identified which are fairly conserved across the phylogenetic tree and are involved in these complex sensory functions. Among all, members belonging to Transient Receptor Potential (TRP) channels have been widely characterized for their involvement in thermo-sensation. These include TRPV1 to TRPV4 channels which reveal complex thermo-gating behavior in response to changes in temperature. The molecular evolution of these channels is highly correlative with the thermal response of different species. However, recent 2504 human genome data suggest that these thermo-sensitive TRPV channels are highly variable and carry possible deleterious mutations in human population. These unexpected findings may explain the individual differences in terms of complex sensory functions.
期刊介绍:
Channels is an open access journal for all aspects of ion channel research. The journal publishes high quality papers that shed new light on ion channel and ion transporter/exchanger function, structure, biophysics, pharmacology, and regulation in health and disease.
Channels welcomes interdisciplinary approaches that address ion channel physiology in areas such as neuroscience, cardiovascular sciences, cancer research, endocrinology, and gastroenterology. Our aim is to foster communication among the ion channel and transporter communities and facilitate the advancement of the field.