Complex Links and Hilbert-Samuel Multiplicities

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
M. Helmer, Vidit Nanda
{"title":"Complex Links and Hilbert-Samuel Multiplicities","authors":"M. Helmer, Vidit Nanda","doi":"10.1137/22m1475533","DOIUrl":null,"url":null,"abstract":"We describe a framework for estimating Hilbert-Samuel multiplicities $e_XY$ for pairs of projective varieties $X \\subset Y$ from finite point samples rather than defining equations. The first step involves proving that this multiplicity remains invariant under certain hyperplane sections which reduce $X$ to a point $p$ and $Y$ to a curve $C$. Next, we establish that $e_pC$ equals the Euler characteristic (and hence, the cardinality) of the complex link of $p$ in $C$. Finally, we provide explicit bounds on the number of uniform point samples needed (in an annular neighborhood of $p$ in $C$) to determine this Euler characteristic with high confidence.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1475533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a framework for estimating Hilbert-Samuel multiplicities $e_XY$ for pairs of projective varieties $X \subset Y$ from finite point samples rather than defining equations. The first step involves proving that this multiplicity remains invariant under certain hyperplane sections which reduce $X$ to a point $p$ and $Y$ to a curve $C$. Next, we establish that $e_pC$ equals the Euler characteristic (and hence, the cardinality) of the complex link of $p$ in $C$. Finally, we provide explicit bounds on the number of uniform point samples needed (in an annular neighborhood of $p$ in $C$) to determine this Euler characteristic with high confidence.
复杂链接和希尔伯特-塞缪尔多重性
我们描述了一个从有限点样本中估计射影变量$X \子集$ Y$对的Hilbert-Samuel多重性$e_XY$的框架,而不是定义方程。第一步是证明这种多重性在某些超平面截面下保持不变,这些超平面截面将X$简化为点$p$,将Y$简化为曲线$C$。接下来,我们建立了$e_pC$等于$C$中$p$的复链接的欧拉特征(因此是基数)。最后,我们提供了所需的一致点样本数量的显式界限(在$p$在$C$的环形邻域内),以高置信度确定该欧拉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信