{"title":"Complex Links and Hilbert-Samuel Multiplicities","authors":"M. Helmer, Vidit Nanda","doi":"10.1137/22m1475533","DOIUrl":null,"url":null,"abstract":"We describe a framework for estimating Hilbert-Samuel multiplicities $e_XY$ for pairs of projective varieties $X \\subset Y$ from finite point samples rather than defining equations. The first step involves proving that this multiplicity remains invariant under certain hyperplane sections which reduce $X$ to a point $p$ and $Y$ to a curve $C$. Next, we establish that $e_pC$ equals the Euler characteristic (and hence, the cardinality) of the complex link of $p$ in $C$. Finally, we provide explicit bounds on the number of uniform point samples needed (in an annular neighborhood of $p$ in $C$) to determine this Euler characteristic with high confidence.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1475533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a framework for estimating Hilbert-Samuel multiplicities $e_XY$ for pairs of projective varieties $X \subset Y$ from finite point samples rather than defining equations. The first step involves proving that this multiplicity remains invariant under certain hyperplane sections which reduce $X$ to a point $p$ and $Y$ to a curve $C$. Next, we establish that $e_pC$ equals the Euler characteristic (and hence, the cardinality) of the complex link of $p$ in $C$. Finally, we provide explicit bounds on the number of uniform point samples needed (in an annular neighborhood of $p$ in $C$) to determine this Euler characteristic with high confidence.