Dilan SriDaran, M. Sherris, Andrés M. Villegas, Jonathan Ziveyi
{"title":"A GROUP REGULARISATION APPROACH FOR CONSTRUCTING GENERALISED AGE-PERIOD-COHORT MORTALITY PROJECTION MODELS","authors":"Dilan SriDaran, M. Sherris, Andrés M. Villegas, Jonathan Ziveyi","doi":"10.1017/asb.2021.29","DOIUrl":null,"url":null,"abstract":"Abstract Given the rapid reductions in human mortality observed over recent decades and the uncertainty associated with their future evolution, there have been a large number of mortality projection models proposed by actuaries and demographers in recent years. Many of these, however, suffer from being overly complex, thereby producing spurious forecasts, particularly over long horizons and for small, noisy data sets. In this paper, we exploit statistical learning tools, namely group regularisation and cross-validation, to provide a robust framework to construct discrete-time mortality models by automatically selecting the most appropriate functions to best describe and forecast particular data sets. Most importantly, this approach produces bespoke models using a trade-off between complexity (to draw as much insight as possible from limited data sets) and parsimony (to prevent over-fitting to noise), with this trade-off designed to have specific regard to the forecasting horizon of interest. This is illustrated using both empirical data from the Human Mortality Database and simulated data, using code that has been made available within a user-friendly open-source R package StMoMo.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2021.29","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Given the rapid reductions in human mortality observed over recent decades and the uncertainty associated with their future evolution, there have been a large number of mortality projection models proposed by actuaries and demographers in recent years. Many of these, however, suffer from being overly complex, thereby producing spurious forecasts, particularly over long horizons and for small, noisy data sets. In this paper, we exploit statistical learning tools, namely group regularisation and cross-validation, to provide a robust framework to construct discrete-time mortality models by automatically selecting the most appropriate functions to best describe and forecast particular data sets. Most importantly, this approach produces bespoke models using a trade-off between complexity (to draw as much insight as possible from limited data sets) and parsimony (to prevent over-fitting to noise), with this trade-off designed to have specific regard to the forecasting horizon of interest. This is illustrated using both empirical data from the Human Mortality Database and simulated data, using code that has been made available within a user-friendly open-source R package StMoMo.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.