FISSIONE: a scalable constant degree and low congestion DHT scheme based on Kautz graphs

Dongsheng Li, Xicheng Lu, Jie Wu
{"title":"FISSIONE: a scalable constant degree and low congestion DHT scheme based on Kautz graphs","authors":"Dongsheng Li, Xicheng Lu, Jie Wu","doi":"10.1109/INFCOM.2005.1498449","DOIUrl":null,"url":null,"abstract":"The distributed hash table (DHT) scheme has become the core component of many large-scale peer-to-peer networks. Degree, diameter, and congestion are important measures of DHT schemes. Many proposed DHT schemes are based on traditional interconnection topologies, one being the Kautz graph, which is a static topology with many good properties such as optimal diameter, optimal fault-tolerance, and low congestion. In this paper, we propose FISSIONE: the first effective DHT scheme based on Kautz graphs. FISSIONE is constant degree, O(log N) diameter, and (1 + o(1))-congestion-free. FISSIONE shows that a DHT scheme with constant degree and constant congestion can still achieve O(log N) diameter, which is better than the lower bound /spl Omega/(N/sup 1/d/) conjectured before. The average degree of FISSIONE is 4, the diameter is less than 2 log N, and the maintenance message cost is less than 3 log N. The average routing path length is about log N and is shorter than CAN or Koorde with the same degree when the peer-to-peer network is large-scale. FISSIONE can achieve good load balance, high performance, and low congestion and these properties are carefully evaluated by formal proofs or simulations in the paper.","PeriodicalId":20482,"journal":{"name":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","volume":"33 1","pages":"1677-1688 vol. 3"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2005.1498449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

The distributed hash table (DHT) scheme has become the core component of many large-scale peer-to-peer networks. Degree, diameter, and congestion are important measures of DHT schemes. Many proposed DHT schemes are based on traditional interconnection topologies, one being the Kautz graph, which is a static topology with many good properties such as optimal diameter, optimal fault-tolerance, and low congestion. In this paper, we propose FISSIONE: the first effective DHT scheme based on Kautz graphs. FISSIONE is constant degree, O(log N) diameter, and (1 + o(1))-congestion-free. FISSIONE shows that a DHT scheme with constant degree and constant congestion can still achieve O(log N) diameter, which is better than the lower bound /spl Omega/(N/sup 1/d/) conjectured before. The average degree of FISSIONE is 4, the diameter is less than 2 log N, and the maintenance message cost is less than 3 log N. The average routing path length is about log N and is shorter than CAN or Koorde with the same degree when the peer-to-peer network is large-scale. FISSIONE can achieve good load balance, high performance, and low congestion and these properties are carefully evaluated by formal proofs or simulations in the paper.
FISSIONE:一个基于Kautz图的可扩展的恒度和低拥塞DHT方案
分布式哈希表(DHT)方案已经成为许多大规模对等网络的核心组成部分。度、直径和拥塞是DHT方案的重要指标。许多提出的DHT方案都是基于传统的互连拓扑,其中一种是Kautz图,它是一种静态拓扑,具有许多良好的特性,如最优直径、最优容错和低拥塞。在本文中,我们提出FISSIONE:第一个有效的基于Kautz图的DHT方案。FISSIONE度恒定,直径为O(log N),无(1 + O(1))-拥塞。FISSIONE表明,恒度和恒拥塞的DHT方案仍然可以达到O(log N)直径,优于之前推测的下界/spl Omega/(N/sup 1/d/)。FISSIONE的平均程度为4,直径小于2 log N,维护消息开销小于3 log N,平均路由路径长度约为log N,在对等网络规模较大时比相同程度的CAN或Koorde短。FISSIONE可以实现良好的负载平衡、高性能和低拥塞,并通过正式证明或仿真仔细评估了这些特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信