{"title":"用于穿戴式鼠标信号的端点检测研究","authors":"闻 孙, 志勇 姚, 纪权 钟, 跃辉 胡","doi":"10.55375/aif.2023.2.1","DOIUrl":null,"url":null,"abstract":"本文研究利用神经网络进行穿戴式鼠标中的鼠标手势信号端点检测。我们将长短期记忆神经网络(Long Short Term Memory,LSTM)用作基本神经单元,并引入了一个线性距离因子。神经网络模型在该因子的帮助下可以适应性的更新分割函数。在验证时利用总计约3000个手势数据样本对模型进行了训练和评估。结果表明,在鼠标手势的端点检测中,相比于传统固定的双门限方法,基于LSTM的神经网络端点检测算法模型适应性好,无需附加任何阈值即可有效应用于手势分割,而且可以明显提升最终手势分类识别率,使其平均识别率达到了95.8%。","PeriodicalId":56786,"journal":{"name":"人工智能法学研究","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能法学研究","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.55375/aif.2023.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
本文研究利用神经网络进行穿戴式鼠标中的鼠标手势信号端点检测。我们将长短期记忆神经网络(Long Short Term Memory,LSTM)用作基本神经单元,并引入了一个线性距离因子。神经网络模型在该因子的帮助下可以适应性的更新分割函数。在验证时利用总计约3000个手势数据样本对模型进行了训练和评估。结果表明,在鼠标手势的端点检测中,相比于传统固定的双门限方法,基于LSTM的神经网络端点检测算法模型适应性好,无需附加任何阈值即可有效应用于手势分割,而且可以明显提升最终手势分类识别率,使其平均识别率达到了95.8%。
本文研究利用神经网络进行穿戴式鼠标中的鼠标手势信号端点检测。我们将长短期记忆神经网络(Long Short Term Memory,LSTM)用作基本神经单元,并引入了一个线性距离因子。神经网络模型在该因子的帮助下可以适应性的更新分割函数。在验证时利用总计约3000个手势数据样本对模型进行了训练和评估。结果表明,在鼠标手势的端点检测中,相比于传统固定的双门限方法,基于LSTM的神经网络端点检测算法模型适应性好,无需附加任何阈值即可有效应用于手势分割,而且可以明显提升最终手势分类识别率,使其平均识别率达到了95.8%。