{"title":"Changes in Muscle Control After Learning to Direct Pedal Forces in One-Legged Pedaling","authors":"Sangsoo Park, R. Emmerik, G. Caldwell","doi":"10.1123/JMLD.2020-0052","DOIUrl":null,"url":null,"abstract":"The aim of this study was to describe how major leg muscle activities are altered after learning a novel one-legged pedaling task. Fifteen recreational cyclists practiced one-legged pedaling trials during which they were instructed to match their applied pedal force to a target direction perpendicular to the crank arm. Activity in 10 major leg muscles was measured with surface electromyography electrodes. Improved upstroke task performance was obtained by greater activity in the hip and ankle flexor muscles, counteracting the negative effects of gravity. Greater quadriceps activities explained improved targeting near top dead center. Reduced uniarticular knee and ankle extensor downstroke activities were necessary to prevent freewheeling. Greater hamstring and tibialis anterior activities improved targeting performance near the bottom of the pedal stroke. The activity patterns of the biarticular plantarflexors changed little, likely due to their contributions as knee flexors for smooth upstroke pedaling motion. These results add to our understanding of how the degrees of freedom at the muscle level are altered in a cooperative manner to overcome gravitational effects in order to achieve the learning goal of the motor task while satisfying multiple constraints—in this case, the production of smooth one-legged pedaling motion at the designated mechanical task demands.","PeriodicalId":37368,"journal":{"name":"Journal of Motor Learning and Development","volume":"3 1","pages":"1-19"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Motor Learning and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/JMLD.2020-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, DEVELOPMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of this study was to describe how major leg muscle activities are altered after learning a novel one-legged pedaling task. Fifteen recreational cyclists practiced one-legged pedaling trials during which they were instructed to match their applied pedal force to a target direction perpendicular to the crank arm. Activity in 10 major leg muscles was measured with surface electromyography electrodes. Improved upstroke task performance was obtained by greater activity in the hip and ankle flexor muscles, counteracting the negative effects of gravity. Greater quadriceps activities explained improved targeting near top dead center. Reduced uniarticular knee and ankle extensor downstroke activities were necessary to prevent freewheeling. Greater hamstring and tibialis anterior activities improved targeting performance near the bottom of the pedal stroke. The activity patterns of the biarticular plantarflexors changed little, likely due to their contributions as knee flexors for smooth upstroke pedaling motion. These results add to our understanding of how the degrees of freedom at the muscle level are altered in a cooperative manner to overcome gravitational effects in order to achieve the learning goal of the motor task while satisfying multiple constraints—in this case, the production of smooth one-legged pedaling motion at the designated mechanical task demands.
期刊介绍:
The Journal of Motor Learning and Development (JMLD) publishes peer-reviewed research that advances the understanding of movement skill acquisition and expression across the lifespan. JMLD aims to provide a platform for theoretical, translational, applied, and innovative research related to factors that influence the learning or re-learning of skills in individuals with various movement-relevant abilities and disabilities.