Numerical and experimental investigation on parameters determination of the suspension system for a high-speed train aiming at cross-line operation

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yixiao Li, Jianfeng Sun, Liangcheng Dai, Zhaotuan Guo, M. Chi
{"title":"Numerical and experimental investigation on parameters determination of the suspension system for a high-speed train aiming at cross-line operation","authors":"Yixiao Li, Jianfeng Sun, Liangcheng Dai, Zhaotuan Guo, M. Chi","doi":"10.1177/14644193231176956","DOIUrl":null,"url":null,"abstract":"Cross-line operation that can improve the utilization of railway equipment and transportation efficiency is expected to be the development of the future, and the key to realizing this is to guarantee the dynamics performance of high-speed trains operating on different railway lines. To this end, this study focuses on determining the parameters of a suspension system for a high-speed train equipped with semi-active dampers. Multi-body dynamics method is used to establish a mathematical model of a high-speed vehicle, and a numerical integration method is applied to calculate the system response. An improved genetic algorithm adopting the dynamic Hamming distance, dynamic crossover, and mutation coefficients is integrated into the numerical simulation process to determine the parameters. Based on the numerical analysis, the optimized damping values for various hydraulic dampers in their passive modes are obtained. Finally, an experimental validation based on roller-rig and field loop-line tests is performed, and the test results verify the effectiveness of the optimized parameters. Thus, the study findings can serve as a reference to enhance the realization of cross-line operation.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193231176956","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-line operation that can improve the utilization of railway equipment and transportation efficiency is expected to be the development of the future, and the key to realizing this is to guarantee the dynamics performance of high-speed trains operating on different railway lines. To this end, this study focuses on determining the parameters of a suspension system for a high-speed train equipped with semi-active dampers. Multi-body dynamics method is used to establish a mathematical model of a high-speed vehicle, and a numerical integration method is applied to calculate the system response. An improved genetic algorithm adopting the dynamic Hamming distance, dynamic crossover, and mutation coefficients is integrated into the numerical simulation process to determine the parameters. Based on the numerical analysis, the optimized damping values for various hydraulic dampers in their passive modes are obtained. Finally, an experimental validation based on roller-rig and field loop-line tests is performed, and the test results verify the effectiveness of the optimized parameters. Thus, the study findings can serve as a reference to enhance the realization of cross-line operation.
面向跨线运行的高速列车悬挂系统参数确定的数值与实验研究
提高铁路设备利用率和运输效率的跨线运营有望成为未来的发展方向,而实现这一目标的关键是保证高速列车在不同铁路线上运行时的动态性能。为此,本研究的重点是确定配备半主动阻尼器的高速列车悬架系统的参数。采用多体动力学方法建立了高速车辆的数学模型,并采用数值积分法计算了系统响应。将采用动态汉明距离、动态交叉和变异系数的改进遗传算法集成到数值模拟过程中来确定参数。在数值分析的基础上,得到了各种液压阻尼器在被动模式下的最优阻尼值。最后,进行了基于滚轮钻机和现场环线试验的实验验证,试验结果验证了优化参数的有效性。因此,研究结果可为提高跨线运营的实现提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
11.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信