Nonhomogeneous Place-dependent Markov Chains, Unsynchronised AIMD, and Optimisation

F. Wirth, S. Stüdli, Jia Yuan Yu, M. Corless, R. Shorten
{"title":"Nonhomogeneous Place-dependent Markov Chains, Unsynchronised AIMD, and Optimisation","authors":"F. Wirth, S. Stüdli, Jia Yuan Yu, M. Corless, R. Shorten","doi":"10.1145/3312741","DOIUrl":null,"url":null,"abstract":"A stochastic algorithm is presented for a class of optimisation problems that arise when a group of agents compete to share a single constrained resource in an optimal manner. The approach uses intermittent single-bit feedback, which indicates a constraint violation and does not require inter-agent communication. The algorithm is based on a positive matrix model of AIMD, which is extended to the nonhomogeneous Markovian case. The key feature is the assignment of back-off probabilities to the individual agents as a function of the past average access to the resource. This leads to a nonhomogeneous Markov chain in an extended state space, and we show almost sure convergence of the average access to the social optimum.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3312741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A stochastic algorithm is presented for a class of optimisation problems that arise when a group of agents compete to share a single constrained resource in an optimal manner. The approach uses intermittent single-bit feedback, which indicates a constraint violation and does not require inter-agent communication. The algorithm is based on a positive matrix model of AIMD, which is extended to the nonhomogeneous Markovian case. The key feature is the assignment of back-off probabilities to the individual agents as a function of the past average access to the resource. This leads to a nonhomogeneous Markov chain in an extended state space, and we show almost sure convergence of the average access to the social optimum.
非齐次位置相关马尔可夫链,非同步目标和优化
针对一类优化问题,提出了一种随机算法,该算法是在一组智能体以最优方式竞争共享单个约束资源时出现的。该方法使用间歇的单比特反馈,它指示约束违反并且不需要代理间通信。该算法基于AIMD的正矩阵模型,并将其推广到非齐次马尔可夫情况下。关键特征是将退出概率分配给单个代理,作为过去对资源的平均访问的函数。这导致了扩展状态空间中的非齐次马尔可夫链,并证明了接近社会最优的平均路径几乎肯定收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信