A. Gastounioti, M. Eriksson, Eric A. Cohen, W. Mankowski, Lauren Pantalone, A. McCarthy, D. Kontos, P. Hall, E. Conant
{"title":"External validation of an AI-driven breast cancer risk prediction model in a racially diverse cohort of women undergoing mammographic screening","authors":"A. Gastounioti, M. Eriksson, Eric A. Cohen, W. Mankowski, Lauren Pantalone, A. McCarthy, D. Kontos, P. Hall, E. Conant","doi":"10.1117/12.2627140","DOIUrl":null,"url":null,"abstract":"The aim of this retrospective case-cohort study was to perform additional validation of an artificial intelligence (AI)-driven breast cancer risk model in a racially diverse cohort of women undergoing screening. We included 176 breast cancer cases with non-actionable mammographic screening exams 3 months to 2 years prior to cancer diagnosis and a random sample of 4,963 controls from women with non-actionable mammographic screening exams and at least one-year of negative follow-up (Hospital University Pennsylvania, PA, USA; 9/1/2010-1/6/2015). A risk score for each woman was extracted from full-field digital mammography (FFDM) images via an AI risk prediction model, previously developed and validated in a Swedish screening cohort. The performance of the AI risk model was assessed via age-adjusted area under the ROC curve (AUC) for the entire cohort, as well as for the two largest racial subgroups (White and Black). The performance of the Gail 5-year risk model was also evaluated for comparison purposes. The AI risk model demonstrated an AUC for all women = 0.68 95% CIs [0.64, 0.72]; for White = 0.67 [0.61, 0.72]; for Black = 0.70 [0.65, 0.76]. The AI risk model significantly outperformed the Gail risk model for all women (AUC = 0.68 vs AUC = 0.55, p<0.01) and for Black women (AUC = 0.71 vs AUC = 0.48, p<0.01), but not for White women (AUC = 0.66 vs AUC = 0.61, p=0.38). Preliminary findings in an independent dataset suggest a promising performance of the AI risk prediction model in a racially diverse breast cancer screening cohort.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"1 1","pages":"1228617 - 1228617-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2627140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this retrospective case-cohort study was to perform additional validation of an artificial intelligence (AI)-driven breast cancer risk model in a racially diverse cohort of women undergoing screening. We included 176 breast cancer cases with non-actionable mammographic screening exams 3 months to 2 years prior to cancer diagnosis and a random sample of 4,963 controls from women with non-actionable mammographic screening exams and at least one-year of negative follow-up (Hospital University Pennsylvania, PA, USA; 9/1/2010-1/6/2015). A risk score for each woman was extracted from full-field digital mammography (FFDM) images via an AI risk prediction model, previously developed and validated in a Swedish screening cohort. The performance of the AI risk model was assessed via age-adjusted area under the ROC curve (AUC) for the entire cohort, as well as for the two largest racial subgroups (White and Black). The performance of the Gail 5-year risk model was also evaluated for comparison purposes. The AI risk model demonstrated an AUC for all women = 0.68 95% CIs [0.64, 0.72]; for White = 0.67 [0.61, 0.72]; for Black = 0.70 [0.65, 0.76]. The AI risk model significantly outperformed the Gail risk model for all women (AUC = 0.68 vs AUC = 0.55, p<0.01) and for Black women (AUC = 0.71 vs AUC = 0.48, p<0.01), but not for White women (AUC = 0.66 vs AUC = 0.61, p=0.38). Preliminary findings in an independent dataset suggest a promising performance of the AI risk prediction model in a racially diverse breast cancer screening cohort.