Kanokwan Darasoon, Supawitch Hoijang, Tanapong Kunakham, Sorapong Janhom, S. Ananta, Gyu Leem, L. Srisombat
{"title":"Preparation of Porous Silica Nanoparticles by Chemical Etching for Removal of Paraquat from Aqueous Solution","authors":"Kanokwan Darasoon, Supawitch Hoijang, Tanapong Kunakham, Sorapong Janhom, S. Ananta, Gyu Leem, L. Srisombat","doi":"10.12982/cmjs.2023.009","DOIUrl":null,"url":null,"abstract":"In t his study, solid silica nanoparticles (sSiO2 NPs) were chemically etched using sodium hydroxide solution as an etchant to synthesize porous silica nanoparticles (pSiO2 NPs). Etchant dosage and etching time were optimized to obtain the optimum etching condition providing the effective removal of paraquat (PQ). High removal efficiency of PQ by the synthesized pSiO2 NPs was obtained over 90% using 11.1 mL of 1.25 M NaOH and 12 h for the etching process. SEM and TEM images showed that the porosity of pSiO2 NPs increased with increase of the etchant dosage and etching time. The increment of porosity of pSiO2 NPs enhanced the PQ removal efficiency. FTIR result indicated that the characteristic functionalities of silica remain after the etching process. After optimum condition of etching obtained, the adsorption behavior of PQ was investigated. Several key factors influencing the adsorption efficiency, i.e., initial solution pH, initial concentration, and adsorption time were optimized. The maximum removal efficiency of PQ (~98%) by the pSiO2 nanoadsorbent was obtained using 100 mg L-1 of PQ solution at pH ~7 within 5 minutes. The maximum adsorption capacity (qmax) of the pSiO2 NPs for the PQ removal was 65.7 mg g-1. The pSiO2 nanoadsorbent is effective adsorbent for the PQ removal due to the development of a facile synthetic method for adsorbent preparation, rapid adsorption process, and comparable qmax value with other PQ adsorbents.","PeriodicalId":9884,"journal":{"name":"Chiang Mai Journal of Science","volume":"26 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.12982/cmjs.2023.009","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In t his study, solid silica nanoparticles (sSiO2 NPs) were chemically etched using sodium hydroxide solution as an etchant to synthesize porous silica nanoparticles (pSiO2 NPs). Etchant dosage and etching time were optimized to obtain the optimum etching condition providing the effective removal of paraquat (PQ). High removal efficiency of PQ by the synthesized pSiO2 NPs was obtained over 90% using 11.1 mL of 1.25 M NaOH and 12 h for the etching process. SEM and TEM images showed that the porosity of pSiO2 NPs increased with increase of the etchant dosage and etching time. The increment of porosity of pSiO2 NPs enhanced the PQ removal efficiency. FTIR result indicated that the characteristic functionalities of silica remain after the etching process. After optimum condition of etching obtained, the adsorption behavior of PQ was investigated. Several key factors influencing the adsorption efficiency, i.e., initial solution pH, initial concentration, and adsorption time were optimized. The maximum removal efficiency of PQ (~98%) by the pSiO2 nanoadsorbent was obtained using 100 mg L-1 of PQ solution at pH ~7 within 5 minutes. The maximum adsorption capacity (qmax) of the pSiO2 NPs for the PQ removal was 65.7 mg g-1. The pSiO2 nanoadsorbent is effective adsorbent for the PQ removal due to the development of a facile synthetic method for adsorbent preparation, rapid adsorption process, and comparable qmax value with other PQ adsorbents.
期刊介绍:
The Chiang Mai Journal of Science is an international English language peer-reviewed journal which is published in open access electronic format 6 times a year in January, March, May, July, September and November by the Faculty of Science, Chiang Mai University. Manuscripts in most areas of science are welcomed except in areas such as agriculture, engineering and medical science which are outside the scope of the Journal. Currently, we focus on manuscripts in biology, chemistry, physics, materials science and environmental science. Papers in mathematics statistics and computer science are also included but should be of an applied nature rather than purely theoretical. Manuscripts describing experiments on humans or animals are required to provide proof that all experiments have been carried out according to the ethical regulations of the respective institutional and/or governmental authorities and this should be clearly stated in the manuscript itself. The Editor reserves the right to reject manuscripts that fail to do so.