Integrated CUDA-to-FPGA Synthesis with Network-on-Chip

S. Gurumani, Jacob Tolar, Yao Chen, Yun Liang, K. Rupnow, Deming Chen
{"title":"Integrated CUDA-to-FPGA Synthesis with Network-on-Chip","authors":"S. Gurumani, Jacob Tolar, Yao Chen, Yun Liang, K. Rupnow, Deming Chen","doi":"10.1109/.12","DOIUrl":null,"url":null,"abstract":"Data parallel languages such as CUDA and OpenCL efficiently describe many parallel threads of computation, and HLS tools can effectively translate these descriptions into independent optimized cores. As the number of instantiated cores grows, average external memory access latency can be a significant factor in system performance. However, although each core produces outputs independently, the cores often heavily share input data. Exploiting on-chip data sharing both reduces external bandwidth demand and improves the average memory access latency, allowing the system to improve performance at the same number of cores. In this paper, we develop a network-on-chip coupled with computation cores synthesized from CUDA for FPGAs that enables on-chip data sharing. We demonstrate reduced external bandwidth demand by up to 60% (average 56%) and total application latency in cycles by up to 43% (average 27%).","PeriodicalId":93352,"journal":{"name":"Proceedings ... Annual IEEE Symposium on Field-Programmable Custom Computing Machines. FCCM (Symposium)","volume":"83 1","pages":"21-24"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ... Annual IEEE Symposium on Field-Programmable Custom Computing Machines. FCCM (Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data parallel languages such as CUDA and OpenCL efficiently describe many parallel threads of computation, and HLS tools can effectively translate these descriptions into independent optimized cores. As the number of instantiated cores grows, average external memory access latency can be a significant factor in system performance. However, although each core produces outputs independently, the cores often heavily share input data. Exploiting on-chip data sharing both reduces external bandwidth demand and improves the average memory access latency, allowing the system to improve performance at the same number of cores. In this paper, we develop a network-on-chip coupled with computation cores synthesized from CUDA for FPGAs that enables on-chip data sharing. We demonstrate reduced external bandwidth demand by up to 60% (average 56%) and total application latency in cycles by up to 43% (average 27%).
集成CUDA-to-FPGA合成与片上网络
数据并行语言如CUDA和OpenCL有效地描述了许多并行计算线程,HLS工具可以有效地将这些描述转化为独立的优化内核。随着实例化内核数量的增加,平均外部内存访问延迟可能是影响系统性能的一个重要因素。然而,尽管每个核心独立产生输出,但核心通常大量共享输入数据。利用片上数据共享既可以减少外部带宽需求,又可以提高平均内存访问延迟,从而使系统在相同数量的内核下提高性能。在本文中,我们开发了一个片上网络,并结合了由CUDA合成的fpga计算核心,使片上数据共享成为可能。我们证明外部带宽需求减少了60%(平均56%),总应用程序周期延迟减少了43%(平均27%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信