On the Dirichlet problem for fully nonlinear elliptic hessian systems

IF 1.2 2区 数学 Q1 MATHEMATICS
Nikos Katzourakis
{"title":"On the Dirichlet problem for fully nonlinear elliptic hessian systems","authors":"Nikos Katzourakis","doi":"10.2422/2036-2145.201411_003","DOIUrl":null,"url":null,"abstract":"We consider the problem of existence and uniqueness of strong solutions u : Ω ⊂ Rn −→ RN in (H2 ∩H1 0 )(Ω)N to the problem (1) { F (·, D2u) = f, in Ω, u = 0, on ∂Ω, when f ∈ L2(Ω)N , F is a Caratheodory map and Ω is convex. (1) has been considered by several authors, firstly by Campanato and under Campanato’s ellipticity condition. By employing a new weaker notion of ellipticity introduced in recent work of the author [K2] for the respective global problem on Rn, we prove well-posedness of (1). Our result extends existing ones under hypotheses weaker than those known previously. An essential part of our analysis in an extension of the classical Miranda-Talenti inequality to the vector case of 2nd order linear hessian systems with rank-one convex coefficients.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"1 1","pages":"707-727"},"PeriodicalIF":1.2000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201411_003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the problem of existence and uniqueness of strong solutions u : Ω ⊂ Rn −→ RN in (H2 ∩H1 0 )(Ω)N to the problem (1) { F (·, D2u) = f, in Ω, u = 0, on ∂Ω, when f ∈ L2(Ω)N , F is a Caratheodory map and Ω is convex. (1) has been considered by several authors, firstly by Campanato and under Campanato’s ellipticity condition. By employing a new weaker notion of ellipticity introduced in recent work of the author [K2] for the respective global problem on Rn, we prove well-posedness of (1). Our result extends existing ones under hypotheses weaker than those known previously. An essential part of our analysis in an extension of the classical Miranda-Talenti inequality to the vector case of 2nd order linear hessian systems with rank-one convex coefficients.
全非线性椭圆型hessian系统的Dirichlet问题
我们考虑强解u的存在唯一性问题:Ω∧Rn−→Rn在(H2∩H1 0)(Ω)N中到问题(1){F(·,D2u) = F,在Ω中,u = 0,在∂Ω上,当F∈L2(Ω)N时,F是一个Caratheodory映射,Ω是凸的。(1)已经被一些作者考虑过,首先是由Campanato和在Campanato的椭圆条件下。通过采用作者[K2]在最近的工作中引入的一个新的较弱的椭圆性概念,我们证明了(1)的适定性。我们的结果在弱于先前已知的假设下扩展了现有的结果。将经典Miranda-Talenti不等式推广到具有秩1凸系数的二阶线性hessian系统的向量情况是我们分析的重要部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信